A multiestimation-based robust adaptive controller is designed for robotic manipulators. The control scheme is composed of a set of estimation algorithms running in parallel along with a supervisory index proposed with the aim of evaluating the identification performance of each one. Then, a higher-order level supervision algorithm decides in real time the estimator that will parametrize the adaptive controller at each time instant according to the values of the above supervisory indexes. There exists a minimum residence time between switches in such a way that the closed-loop system stability is guaranteed. It is verified through simulations that multiestimation-based schemes can improve the transient response of adaptive systems as well as the closed-loop behavior when a sudden change in the parameters or in the reference input occurs by appropriate switching between the various estimation schemes running in parallel. The closed-loop system is proved to be robustly stable under the influence of uncertainties due to a poor modeling of the robotic manipulator. Finally, the usefulness of the proposed scheme is highlighted by some simulation examples.

1.
Spong
,
M. W.
,
Lewis
,
F. L.
, and
Abdallah
,
C. T.
, 1993,
Robot Control
,
IEEE
,
New York
.
2.
Craig
,
J. J.
, 1996,
Adaptive Control of Mechanical Manipulators
,
Addison-Wesley
,
Reading, MA
.
3.
Sage
,
H. G.
,
Mathelin
,
M. F.
, and
Ostertag
,
E.
, 1999, “
Robust Control of Robot Manipulators: A Survey
,”
Int. J. Control
0020-7179,
72
(
16
), pp.
1498
1522
.
4.
Zhihong
,
M.
,
O’Day
,
M.
, and
Yu
,
X.
, 1999, “
A Robust Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators
,”
J. Intell. Robotic Syst.
0921-0296,
24
(
1
), pp.
23
41
.
5.
Canudas de Wit
,
C.
,
Siciliano
,
B.
, and
Bastin
,
G.
, 1996,
Theory of Robot Control
,
Springer-Verlag
,
Berlin
.
6.
Goodwin
,
G. C.
, and
Sin
,
K. S.
, 1990,
Adaptive Filtering and Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
7.
Narendra
,
K. S.
, and
Balakrishnan
,
J.
, 1997, “
Adaptive Control Using Multiple Models
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
5
), pp.
171
187
.
8.
Narendra
,
K. S.
, and
Balakrishnan
,
J.
, 1994, “
Improving Transient Response of Adaptive Control Systems Using Multiple Models and Switching
,”
IEEE Trans. Autom. Control
0018-9286,
39
(
9
), pp.
1861
1866
.
9.
Ibeas
,
A.
,
de la Sen
,
M.
, and
Alonso-Quesada
,
S.
, 2003, “
Adaptive Stabilization of Discrete Linear Systems via a multiestimation Scheme
,”
Intl. Math. J.
,
3
(
4
), pp.
381
408
.
10.
Canudas de Wit
,
C.
,
Noel
,
P.
,
Aubin
,
A.
, and
Brogliato
,
B.
, 1991, “
Adaptive Friction Compensation in Robot Manipulators: Low Velocities
,”
Int. J. Robot. Res.
0278-3649,
3
, pp.
189
199
.
11.
Sciavicco
,
L.
, and
Siciliano
,
B.
, 2000,
Modelling and Control of Robot Manipulators
,
Springer-Verlag
,
Berlin
.
12.
Dupont
,
P.
,
Hayward
,
V.
,
Armstrong
,
B.
, and
Altpeter
,
F.
, 2002, “
Single State Elastoplastic Friction Models
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
5
), pp.
787
792
.
13.
Middleton
,
R. H.
,
Goodwin
,
G. C.
,
Hill
,
D. J.
, and
Mayne
,
D. Q.
, 1988, “
Design Issues in Adaptive Control
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
1
), pp.
50
58
.
14.
Feng
,
G.
, 1999, “
Analysis of a New Algorithm for Continuous-Time Robust Adaptive Control
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
9
), pp.
1764
1768
.
15.
Sánchez
,
E.
,
Rubio
,
A.
, and
Avello
,
A.
, 2002, “
An Intuitive Force Feedback to Avoid Singularity Proximity and Workspace Boundaries in Bilateral Controlled Systems Based on Virtual Springs
,”
Proc. of the IEEE Inter. Conf. on Intelligent Robots and Systems
,
Lausanne
,
Switzerland
, Vol.
2
, pp.
1302
1307
.
16.
Khalil
,
H. K.
, 2002,
Nonlinear Systems
,
3rd Ed.
Prentice-Hall
,
Englewood Cliffs, NJ
.
17.
Barambones
,
O.
, and
Etxebarria
,
V.
, 2002, “
Robust Neural Control for Robotic Manipulators
,”
Automatica
0005-1098,
38
(
2
), pp.
235
242
.
You do not currently have access to this content.