In this paper, the model reduction problem of neutral systems with time-varying delays is studied with γ suboptimality under the H measure. A delay-dependent bounded realness condition of the H norm is given via linear matrix inequalities (LMIs). Based on such a condition, a sufficient condition to characterize the existence of the reduced-order models is given in terms of LMIs with inverse constraints. By employing a sequential convex optimization approach, a reduced-order model can be computed with H error less than some prescribed scalar γ.

1.
Grigoriadis
,
K. M.
, 1995, “
Optimal H∞ Model Reduction via Linear Matrix Inequalities: Continuous- and Discrete-Time Cases
,”
Syst. Control Lett.
0167-6911,
26
(
5
), pp.
321
333
.
2.
Xu
,
S.
,
Lam
,
J.
,
Huang
,
S.
, and
Yang
,
C.
, 2001, “
H∞ Model Reduction for Linear Time-Delay Systems: Continuous-Time Case
,”
Int. J. Control
0020-7179,
74
(
11
), pp.
1062
1074
.
3.
El Ghaoui
,
L.
,
Oustry
,
F.
, and
AitRami
,
M.
, 1997, “
A Cone Complementarity Linearization Algorithm for Static Output-Feedback and Related Problems
,”
IEEE Trans. Autom. Control
0018-9286,
42
(
8
), pp.
1171
1176
.
4.
Han
,
Q.-L.
, 2002, “
Robust Stability of Uncertain Delay-Differential Systems of Neutral Type
,”
Automatica
0005-1098,
38
(
4
), pp.
719
723
.
5.
Niculescu
,
S.-I.
, 2001, “
On Delay-Dependent Stability Under Model Transformations of Some Neutral Linear Systems
,”
Int. J. Control
0020-7179,
74
(
6
), pp.
609
617
.
6.
Wang
,
Z.
,
Lam
,
J.
, and
Burnham
,
K. J.
, 2002, “
Stability Analysis and Observer Design for Neutral Delay System
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
3
), pp.
478
483
.
7.
Bliman
,
P. A.
, 2002, “
Lyapunov Equation for the Stability of Linear Delay Systems of Retarded and Neutral Type
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
2
), pp.
327
335
.
8.
Park
,
J. H.
, 2002, “
Stability Criterion for Neutral Differential Systems With Mixed Multiple Time-Varying Delay Arguments
,”
Math. Comput. Simul.
0378-4754,
59
(
5
), pp.
401
412
.
9.
Xu
,
S.
,
Lam
,
J.
, and
Yang
,
C.
, 2001, “
H∞ and Positive Real-Control for Linear Neutral Delay Systems
,”
IEEE Trans. Autom. Control
0018-9286,
46
(
8
), pp.
1321
1326
.
10.
Lee
,
Y. S.
,
Moon
,
Y. S.
,
Kwon
,
W. H.
, and
Lee
,
K. H.
, 2001, “
Delay-Dependent Robust H∞ Control for Uncertain Systems With Time-Varying State-Delay
,”
Proceedings of 40th Conference on Decision and Control
,
IEEE
,
Orlando, FL
, pp.
3208
3213
.
11.
Mahmoud
,
M. S.
, and
Zribi
,
M.
, 1999, “
H∞-Controllers for Time-Delay Systems Using Linear Matrix Inequalities
,”
J. Optim. Theory Appl.
0022-3239,
100
(
1
), pp.
89
122
.
12.
Wang
,
H.
,
Lam
,
J.
,
Xu
,
S.
, and
Huang
,
S.
, 2002, “
Robust H∞ Reliable Control for a Class of Uncertain Neutral Delay Systems
,”
Int. J. Syst. Sci.
0020-7721,
33
(
3
), pp.
611
622
.
13.
Skelton
,
R. E.
,
Iwasaki
,
T.
, and
Grigoriadis
,
K. M.
, 1998,
A Unified Algebraic Approach to Linear Control Design
,
Taylor & Francis
, London.
14.
Gahinet
,
P.
, and
Apkarian
,
P.
, 1994, “
A Linear Matrix Inequality Approach to H∞ Control
,”
Int. J. Robust Nonlinear Control
1049-8923,
4
, pp.
421
448
.
15.
de Oliveira
,
M. C.
, and
Geromel
,
J. C.
, 1997, “
Numerical Comparison of Output Feedback Design Methods
,”
Proceedings of American Control Conference
,
American Automatic Control Council
,
Albuquerque, NM
, pp.
72
76
.
This content is only available via PDF.
You do not currently have access to this content.