Abstract

This paper presents the development of a multiinput multioutput generalized predictive control (GPC) law and its application to reconfigurable control design in the event of actuator saturation. The stability of the GPC control law without reconfiguration is first established using an end-point state weighting. Based on the constrained nonlinear optimization, an end-point state weighting matrix synthesis method is derived. A novel reconfiguration strategy is developed for systems that have actuator redundancy and are faced with actuator saturation type failure. An elegant reconfigurable control design is presented with stability proof. A numerical simulation using a short-period approximation model of a civil transport aircraft is presented to demonstrate the reconfigurable control architecture.

1.
Demircioğlu
,
H.
, and
Karasu
,
E.
, 2000, “
Generalized Predictive Control—A Practical Application and Comparison of Discrete- and Continuous-Time Versions
,”
IEEE Control Syst. Mag.
0272-1708,
20
, pp.
36
47
.
2.
Hess
,
R. A.
, and
Jung
,
Y. C.
, 1989, “
An Application of Generalized Predictive Control to Rotorcraft Terrain-Following Flight
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
19
(
5
), pp.
955
962
.
3.
Shi
,
J.
,
Kelkar
,
A. G.
, and
Soloway
,
D.
, 2003, “
GPC-Based Stable Reconfigurable Control
,” in
Proceedings of the 2003 ASME International Mechanical Engineering Congress and Exposition
, Washington, DC, Report No. IMECE2003-42627, pp.
1
8
.
4.
Clarke
,
D. W.
, and
Mohtadi
,
C.
, 1989, “
Properties of Generalized Predictive Control
,”
Automatica
0005-1098,
25
(
6
), pp.
859
875
.
5.
Clarke
,
D. W.
,
Mohtadi
,
C.
, and
Tuffs
,
P. S.
, 1987, “
Generalized Predictive.Control-Part I. The Basic Algorithm
,”
Automatica
0005-1098,
23
(
2
), pp.
137
148
.
6.
Clarke
,
D. W.
,
Mohtadi
,
C.
, and
Tuffs
,
P. S.
, 1987, “
Generalized Predictive Control—Part II. Extensions and Interpretations
,”
Automatica
0005-1098,
23
(
2
), pp.
149
160
.
7.
GarcÍa
,
C. E.
,
Prett
,
D. M.
, and
Morari
,
M.
, 1989, “
Model Predictive Control: Theory and Practice-a Survey
,”
Automatica
0005-1098,
25
(
3
), pp.
335
348
.
8.
Kwon
,
H. K.
, and
Pearson
,
A. E.
, 1977, “
A Modified Quadratic Cost Problem and Feedback Stabilization of a Linear System
,”
IEEE Trans. Autom. Control
0018-9286,
22
(
5
), pp.
838
842
.
9.
Kwon
,
H. K.
, and
Pearson
,
A. E.
, 1978, “
On Feedback Stabilization of Time-Varying Discrete Linear System
,”
IEEE Trans. Autom. Control
0018-9286,
23
(
3
), pp.
479
481
.
10.
Rawlings
,
J. B.
, and
Muske
,
K. R.
, 1993, “
The Stability of Constrained Receding Horizon Control
,”
IEEE Trans. Autom. Control
0018-9286,
38
(
10
), pp.
1512
1516
.
11.
Michalska
,
H.
, and
Mayne
,
D. Q.
, 1993, “
Robust Receding Horizon Control of Constrained Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
38
(
11
), pp.
1623
1633
.
12.
Chen
,
H.
, and
Allgöwer
,
F.
, 1998, “
A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability
,”
Automatica
0005-1098,
34
(
10
), pp.
1205
1217
.
13.
de Oliveira Kothare
,
S. L.
, and
Morari
,
M.
, 2000, “
Contractive Model Predictive Control for Constrained Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
6
), pp.
1053
1071
.
14.
Primbs
,
J. A.
, 1999, “
Nonlinear Optimal Control: A Receding Horizon Approach
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
15.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O.
, 2000, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
0005-1098,
36
(
6
), pp.
789
814
.
16.
Demircioğlu
,
H.
, and
Gawthrop
,
P. J.
, 1991, “
Continuous-Time Generalized Predictive Control (CGPC)
,”
Automatica
0005-1098,
27
(
1
), pp.
55
74
.
17.
Demircioğlu
,
H.
, and
Gawthrop
,
P. J.
, 1992, “
Multivariable Continuous-Time Generalized Predictive Control (MCGPC)
,”
Automatica
0005-1098,
28
(
4
), pp.
697
713
.
18.
Demircioğlu
,
H.
, and
Clarke
,
D. W.
, 1992, “
CGPC with Guaranteed Stability Properties
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
139
(
4
), pp.
371
380
.
19.
Chen
,
W.
,
Ballance
,
D. J.
, and
Gawthrop
,
P. J.
, 2003, “
Optimal Control of Nonlinear Systems: A Predictive Control Approach
,”
Automatica
0005-1098,
39
(
4
), pp.
633
641
.
20.
Gawthrop
,
P. J.
,
Demircioğlu
,
H.
, and
Siller-Alcala
,
I. I.
, 1998, “
Multivariable Continuous-Time Generalized Predictive Control: A State-Space Approach to Linear and Nonlinear Systems
,”
IEE Proc.: Control Theory Appl.
1350-2379,
145
(
3
), pp.
24l
250
.
21.
Clarke
,
D. W.
, and
Scattolini
,
R.
, 1991, “
Constrained Receding-Horizon Predictive Control
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
138
(
4
), pp.
347
354
.
22.
Demircioglu
,
H.
, and
Clarke
,
D. W.
, 1993, “
Generalized Predictive Control with End-Point State Weighting
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
140
(
4
), pp.
275
282
.
23.
Scokaert
,
P. O. M.
, and
Clarke
,
D. W.
, 1994, “
Stabilising Properties of Constained Predictive Control
,”
IEE Proc.: Control Theory Appl.
1350-2379,
141
(
5
), pp.
295
304
.
24.
Soloway
,
D.
,
Shi
,
J.
, and
Kelkar
,
A.
, 2004, “
GPC-Based Stable Reconfigurable Control
,” Report No. NASA/TP 2004-212823, Moffett Field, CA.
25.
Mosca
,
E.
, 1995,
Optimal, Predictive and Adaptive Control
,
Prentice-Hall
, Englewood Cliffs, NJ.
26.
Lewis
,
F. L.
, and
Syrmos
,
V. L.
, 1995,
Optimal Control
, 2nd ed.,
Wiley
, New York.
You do not currently have access to this content.