This paper addresses the temperature control of a three-input (power supplies) three-output (temperature sensors) industrial furnace used to manufacture large composite pieces. Due to the multivariable condition of the process, the strong interaction between the three control loops and the presence of model uncertainties, a sequential design methodology based on quantitative feedback theory is proposed to design the controllers. The methodology derives a full matrix compensator that improves reliability, stability, and control. It not only copes with furnace model uncertainties but also enhances the reference tracking and the homogeneousness of the composite piece temperature while minimizing the coupling effects among the furnace zones and the operating costs.

1.
Dunoyer
,
A.
,
Burnham
,
K. J.
,
Heeley
,
A.
, and
Marcroft
,
S.
, 1998, “
Control of Continuously-Operated High Temperature Furnaces
,” presented at
UKACC International Conference on CONTROL’98
.
2.
Martineau
,
S.
,
Burnham
,
K. J.
,
Haas
,
O. C. L.
,
Andrews
,
G.
, and
Heeley
,
A.
, 2003, “
Four-term Bilinear PID, Controller Applied to an Industrial Furnace
,”
Control Eng. Pract.
0967-0661,
12
, pp.
457
464
.
3.
Abdelrahman
,
M.
, and
Moore
,
K. L.
, 1998, “
Experimental Control of a Cupola Furnace
,” presented at
American Control Conference
.
4.
Vödrös
,
B.
and
Kollár
,
I.
, 2003, “
Identification of a Furnace From Quasi-Periodic Measurements
,”
IEEE Trans. Instrum. Meas.
0018-9456,
52
, pp.
92
95
.
5.
Grassi
,
E.
, and
Tsakalis
,
K.
, 2000, “
PID Controller Tuning by Frequency Loop-Shaping: Application to Diffusion Furnace Temperature Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
, pp.
842
847
.
6.
Rosenbrock
,
H. H.
, 1970,
State Space and Multivariable Theory
,
Nelson
,
London
.
7.
O’Reilly
,
J.
, 1987,
Multivariable Control For Industrial Applications
,
Peter Peregrinus
,
London
, Vol.
32
.
8.
Maciejowski
,
J. M.
, 1989,
Multivariable Feedback Design
,
Addison-Wesley
,
Harlow, United Kingdom
.
9.
Leithead
,
W. E.
, and
O’Reilly
,
J.
, 1992, “
m-Input m-Output Feedback Control by Individual Channel Design
,”
Int. J. Control
0020-7179,
56
, pp.
1347
1397
.
10.
Marlin
,
E.
, 1995,
Process Control: Designing Processes and Control Systems for Dynamic Performance
,
Mc.Graw-Hill
,
New York
.
11.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 1996,
Multivariable Feedback Control. Analysis and Design
,
Wiley
,
New York
.
12.
Yaniv
,
O.
, 1999,
Quantitative Feedback Design of Linear and Non-linear Control Systems
,
Kluwer Academic Publishers
,
Norwell, MA
.
13.
Houpis
,
C. H.
,
Rasmussen
,
S. J.
, and
García-Sanz
,
M.
, 2006,
Quantitative Feedback Theory Fundamentals and Applications
,
2nd ed.
Taylor and Francis
,
Florida
.
14.
Horowitz
,
I.
, 1963,
Synthesis of Feedback Systems
,
Academic Press
,
New York
.
15.
Horowitz
,
I.
, 1979, “
Quantitative Synthesis of Uncertain Multiple Input-Output Feedback Systems
,”
Int. J. Control
0020-7179,
30
, pp.
81
106
.
16.
Horowitz
,
I.
, 1991, “
Survey of Quantitative Feedback Theory (QFT)
,”
Int. J. Control
0020-7179,
53
, pp.
255
291
.
17.
Horowitz
,
I.
, 1993,
Quantitative Feedback Theory (QFT)
,
QFT Publications
,
Boulder, Colorado
, Vol.
1
.
18.
Horowitz
,
I.
, and
Sidi
,
M.
, 1980, “
Practical Design of Feedback Systems with Uncertain Multivariable Plants
,”
Int. J. Syst. Sci.
0020-7721,
11
, pp.
851
875
.
19.
Horowitz
,
I.
, 1982, “
Improved Design Technique for Uncertain Multiple Input-Output Feedback Systems
,”
Int. J. Control
0020-7179,
36
, pp.
977
988
.
20.
Boje
,
E.
and
Nwokah
,
O.
, 1999, “
Quantitative Multivariable Feedback Design for a Turbofan Engine with Forward Path Decoupling
,”
Int. J. Robust Nonlinear Control
1049-8923,
9
, pp.
857
882
.
21.
Yaniv
,
O.
, 1995, “
MIMO QFT Using Non-Diagonal Controllers
,”
Int. J. Control
0020-7179,
61
(
1
), pp.
245
253
.
22.
Kerr
,
M. L.
, 2004,
Robust Control of an Articulating Flexible Structure Using MIMO QFT
,
The University of Queensland
,
Australia
.
23.
Lan
,
C.
,
Kerr
,
M. L.
, and
Jayasuriya
,
S.
, 2004, “
Synthesis of Controllers for Non-minimum Phase and Unstable Systems Using Non-sequential MIMO Quantitative Feedback Theory
,”
presented at American Control Conference
, Boston, MA.
24.
Franchek
,
M.
,
Herman
,
P.
, and
Nwokah
,
O.
, 1997, “
Robust Non-Diagonal Controller Design for Uncertain Multivariable Regulating Systems
,”
J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
80
85
.
25.
De Bedout
,
J. M.
, and
Franchek
,
M. A.
, 2002, “
Stability Conditions for the Sequential Design of Non-Diagonal Multivariable Feedback Controllers
,”
Int. J. Control
0020-7179,
75
, pp.
910
922
.
26.
Garcia-Sanz
,
M.
and
Egaña
,
I.
, 2002, “
Quantitative Non-Diagonal Controller Design for Multivariable Systems with Uncertainty
,”
Int. J. Robust Nonlinear Control
1049-8923,
12
, pp.
321
333
.
27.
García-Sanz
,
M.
,
Egaña
,
I.
, and
Barreras
,
M.
, 2005, “
Design of Quantitative Feedback Theory Non-Diagonal Controllers for use in Uncertain Multiple-input Multiple-output Systems
,”
IEE Proc.: Control Theory Appl.
1350-2379,
152
, pp.
177
187
.
28.
García-Sanz
,
M.
, and
Hadaegh
,
F. Y.
, 2004, “
Coordinated Load Sharing QFT Control of Formation Flying Spacecrafts. 3D Deep Space and Low Earth Keplerian Orbit problems with model uncertainty
,” NASA-JPL, Jet Propulsion Laboratory Document, Vol.
D-30052
.
29.
Barreras
,
M.
, and
García-Sanz
,
M.
, 2003, “
Model Identification of a Multivariable Industrial Furnace
,” presented at
13th IFAC Symposium on System Identification
,
SYSID’03
,
Rotterdam
The Netherlands.
30.
Chapman
,
A. J.
, 1990,
Transmision del Calor
,
3rd ed.
,
Bellisco
,
Madrid
.
31.
Mills
,
A. F.
, 1998,
Heat Transfer
:
Prentice-Hall
.
32.
Astigarraga Urquiza
,
J.
, 1994,
Hornos Industrials de Resistencias. Teoría, Cálculo y Aplicaciones
,
McGraw-Hill/Interamericana de España S.A
.
33.
Hudson
,
G.
, and
Underwood
,
C. P.
, 1999, “
A Simple Building Modelling Procedure for Matlab/Simulink
,” presented at
Proc. of the International Building Performance and Simulation Conference
Kyoto.
34.
García-Sanz
,
M.
, 1997, “
A Reduced Model of Central Heating Systems as a Realistic Scenario for Analyzing Control Strategies
,”
Appl. Math. Model.
0307-904X,
21
, pp.
535
545
.
35.
Parler
,
S. G.
, and
Macomber
,
L.
, 1999, “
Predicting Operating Temperature and Expected Lifetime of Aluminum-Electrolytic Bus Capacitors with Thermal Modeling
,” presented at
PCIM, Power Systems World
.
36.
Wellstead
,
P. E.
, 1979,
Introduction to Physical System Modelling
,
Academic Press
,
London
.
37.
Van Den Hof
,
P. M. J.
and
Schrama
,
R. J. P.
, 1993, “
An Indirect Method for Transfer Function Estimation from Closed Loop Data
,”
Automatica
0005-1098,
29
, pp.
1523
1527
.
38.
Van Den Hof
,
P. M. J.
and
Schrama
,
R. J. P.
, 1995, “
Identification for Control. Closed-Loop Issues
,”
Automatica
0005-1098,
31
, pp.
1751
1770
.
39.
Forssell
,
U.
and
Ljung
,
L.
, 1999, “
Closed-Loop Identification Revisited
,”
Automatica
0005-1098,
35
, pp.
1215
1241
.
40.
Ljung
,
L.
, 1999,
System Identification. Theory for the User
,
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, New Jersey
.
41.
Pintelon
,
R.
and
Schoukens
,
J.
, 2001,
System Identification. A Frequency Domain Approach
,
The Institute of Electrical and Electronic Engineers, Inc.
,
New York
.
42.
Esmaili
,
A.
,
MacGregor
,
J. F.
, and
Taylor
,
P. A.
, 2000, “
Direct and Two-Step Methods for Closed-Loop Identification: A Comparison of Asymptotic and Finite Data Set Performance
,”
J. Process Control
0959-1524,
10
, pp.
525
537
.
43.
Zhu
,
Y.
, and
Backx
,
T.
, 1993,
Identification of Multivariable Industrial Processes
,
Springer-Verlag
,
London
.
44.
Bristol
,
E. H.
, 1966, “
On a New Measure of Interactions for Multivariable Process Control
,”
IEEE Trans. Autom. Control
0018-9286,
11
, pp.
133
134
.
45.
Arkun
,
Y.
and
Downs
,
J.
, 1990, “
General Method to Calculate Input-Output Gains and the Relative Gain Array
,”
Comput. Chem. Eng.
0098-1354,
14
, pp.
1101
1110
.
46.
McAvoy
,
T. J.
, 1981, “
Connection Between Relative Gain and Control Loop Stability and Design
,”
AIChE J.
0001-1541,
27
, pp.
613
619
.
47.
Skogestad
,
S.
, and
Havre
,
K.
, 1996, “
The use of RGA and Condition Numbers Robustness Measures
,” presented at
European Symposium on Computer Aider Process Engineering
, Rhodes, Greece.
48.
García-Sanz
,
M.
and
Eguinoa
,
I.
, 2005, “
Improved Non-Diagonal MIMO QFT Design Technique Considering Non-Minimum Phase Aspects
,” presented at
7th International Symposium on Quantitative Feedback Theory QFT and Robust Frequency Domain Methods
, Lawrence, Kansas.
49.
Borghesani
,
C.
,
Chait
,
Y.
, and
Yaniv
,
O.
, 2002,
Quantitative Feedback Theory Toolbox. For Use With Matlab
,
2nd ed.
,
Terasoft Inc
.
50.
Gutman
,
P. O.
, 1999, “
Qsyn User’s Guide and Reference Guide
,”
Technion Israel Institute of Technology
,
Israel
.
You do not currently have access to this content.