This paper presents an approach for providing realistic force feedback to users manipulating serial-chain virtual mechanisms. In the proposed approach, a haptic device controller is designed that penalizes users’ motion along the directions resisted by the virtual joints. The resisted directions span the nullspace the Jacobian of the virtual mechanism computed at the users’ hand, and are derived via a singular value decomposition-based algorithm. Haptic numerical performance is achieved by computing the resisted directions on the graphics processor, and by using them on the haptics processor to derive the control signal that restricts users’ motion as required by the virtual joints. The performance of the proposed approach is validated through experimental manipulations of links with unrestricted and with restricted motion within a planar virtual world.

1.
Nahvi
,
A.
,
Nelson
,
D.
,
Hollerbach
,
J.
, and
Johnson
,
D.
, 1998, “
Haptic Manipulation of Virtual Mechanisms From Mechanical CAD Designs
,” in
Proc. IEEE Int. Conf. Robot. Autom.
,
Leueven, Belgium
, May, pp.
375
380
.
2.
Ruspini
,
D.
, and
Khatib
,
O.
, 2001, “
Haptic Display for Human Interaction With Virtual Dynamic Environments
,”
J. Rob. Syst.
0741-2223,
18
(
2
), pp.
769
783
.
3.
Son
,
W.
,
Kim
,
K.
,
Amato
,
N.
, and
Trinkle
,
J.
, 2000, “
Interactive Dynamic Simulation Using Haptic Interaction
,” in
Proc. IEEE Int. Conf. Robot. Autom.
,
San Francisco
, May, pp.
145
150
.
4.
Ruspini
,
D.
, and
Khatib
,
O.
, 1998, “
Dynamic Models for Haptic Rendering Systems
,” in
Adv. Robot Kinematics: ARK98
,
Strobl/Salzburg, Austria
, June, pp.
523
532
.
5.
Ruspini
,
D.
, and
Khatib
,
O.
, 1999, “
Collision/Contact Models for Dynamic Simulation and Haptic Interaction
,” in
Proc. 9th Int. Symp. Robot. Res.
,
Snowbird, UT
, Oct., pp.
185
195
.
6.
Khatib
,
O.
,
Brock
,
O.
,
Chang
,
K.-S.
,
Ruspini
,
D.
,
Sentis
,
L.
, and
Viji
,
S.
, 2004, “
Human-Centered Robotics and Interactive Haptic Simulation
,”
Int. J. Robot. Res.
0278-3649,
23
(
2
), pp.
167
178
.
7.
Son
,
W.
,
Kim
,
K.
,
Amato
,
N.
, and
Trinkle
,
J.
, 2004, “
A Generalized Framework for Interactive Dynamic Simulation for MultiRigid Bodies
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
34
(
2
), pp.
912
924
.
8.
Constantinescu
,
D.
,
Salcudean
,
S.
, and
Croft
,
E.
, 2005, “
Haptic Rendering of Rigid Contacts Using Impulsive and Penalty Forces
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
3
), pp.
309
323
.
9.
Featherstone
,
R.
, 1987,
Robot Dynamics Algorithms
,
Kluwer
,
Boston
.
10.
Jain
,
A.
, 1991, “
Unified Formulation of Dynamics for Serial Multibody Systems
,”
J. Guid. Control Dyn.
0731-5090,
14
(
3
), pp.
531
542
.
11.
Lilly
,
K.
, and
Orin
,
D.
, 1994, “
Efficient Dynamic Simulation of Multiple Chain Robotic Mechanisms
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
223
231
.
12.
Chang
,
K.-S.
, and
Khatib
,
O.
, 2000, “
Operational Space Dynamics: Efficient Algorithms for Modeling and Control of Branching Mechanisms
,” in
Proc. IEEE Int. Conf. Robot. Autom.
,
San Francisco
, May, pp.
850
856
.
13.
Khatib
,
O.
, 1987, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE Trans. Rob. Autom.
1042-296X,
3
(
1
), pp.
43
53
.
14.
Khatib
,
O.
, 1995, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Robot. Res.
0278-3649,
13
(
1
), pp.
19
36
.
15.
Stewart
,
D.
, and
Trinkle
,
J.
, 1996, “
An Implicit Time-Stepping Scheme for Rigid Body Dynamics With Inelastic Collisions and Coulomb Friction
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
(
15
), pp.
2673
2691
.
16.
Mirtich
,
B.
, and
Canny
,
J.
, 1994, “
Impulse-Based Dynamic Simulation
,” in
Workshop Algorithm. Found.Robot
,
Goldberg
,
K.
,
Halperin
,
P.
,
Latombe
,
J.-C.
, and
Wilson
,
R.
, eds.,
A. K. Peters
,
Boston
, Feb., pp.
407
418
.
17.
Ruspini
,
D.
,
Koralov
,
K.
, and
Khatib
,
O.
, 1997, “
The Haptic Display of Complex Graphical Environments
,” in
Proc. SIGGRAPH 97
,
Los Angeles
, Aug., pp.
345
352
.
18.
Brown
,
J.
, and
Colgate
,
J.
, 1994, “
Physics-Based Approach to Haptic Display
,” in
Proc. Topic. Workshop Virt. Real. Int. Symp. Meas. Contr. Robot.
,
Houston
, Vol.
1
, Dec., pp.
101
106
.
19.
Adams
,
R.
, and
Hannaford
,
B.
, 1999, “
Stable Haptic Interaction With Virtual Environments
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
3
), pp.
465
474
.
20.
Sirouspour
,
M.
,
DiMaio
,
S.
,
Salcudean
,
S.
,
Abolmaesumi
,
P.
, and
Jones
,
C.
, 2000, “
Haptic Interface Control—Design Issues and Experiments With a Planar Device
,” in
Proc. IEEE Int. Conf. Robot. Autom.
,
San Francisco
, May, pp.
789
794
.
21.
Constantinescu
,
D.
,
Salcudcan
,
S.
, and
Croft
,
E.
, 2005, “
Local Models of Interaction for Realistic Manipulation of Rigid Virtual Worlds
,”
Int. J. Robot. Res.
0278-3649,
24
(
10
), pp.
789
804
.
22.
Joly
,
L.
, and
Andriot
,
C.
, 1995, “
Imposing Motion Constraints to a Force Reflecting Telerobot Through Real-Time Simulation of a Virtual Mechanism
,” in
Proc. IEEE Int. Conf. Robot. Autom.
,
Nagoya, Japan
, May, pp.
357
363
.
23.
Luecke
,
G.
,
Edwards
,
J.
, and
Miller
,
B.
, 1997, “
Virtual Cooperating Manipulator Control for Haptic Interaction With NURBS Surfaces
,” in
Proc. IEEE Int. Conf. Robot. Autom.
,
Albuquerque, NM
, April, pp.
112
117
.
24.
Luecke
,
G.
, and
Zafer
,
N.
, 2000, “
Constraint Coupling of Force and Motion Between Real and Virtual Mechanisms
,” in
SPIE Proc. Mobile Robot XV Telemanip. Telepres. Technol. VI
,
Boston
, Nov., Vol.
4195
, pp.
331
339
.
25.
Hogan
,
N.
, 1985, “
Impedance Control: An Approach to Manipulation. Theory, Implementation, Application
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
, pp.
1
24
.
26.
Lawrence
,
D.
, 1993, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
1042-296X,
9
(
5
), pp.
624
637
.
27.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
28.
Hannaford
,
B.
, and
Anderson
,
R.
, 1988, “
Experimental and Simulation Studies of Hard Contact Force Reflecting Teleoperation
,” in
Proc. IEEE Int. Conf. Robot. Autom.
,
Scottsdale, AZ
, April, pp.
24
29
.
You do not currently have access to this content.