Passive robotic devices may exhibit a spatially varying apparent inertia perceptible to a human user. The apparent inertia is the projection of the inertia matrix onto the instantaneous direction of motion. The spatial variation is due to the configuration dependence of the inertia matrix and relevant to many passive mechanisms, including programmable constraint machines or “cobots,” which use low-power steering actuators to choose the direction of motion. We develop two techniques for controlling the apparent inertia in cobots to emulate the desired inertial properties of a virtual object or mechanism. The first is a path-limiting method, which constraints the cobot to steer along certain paths where the apparent inertia and desired inertia are equivalent. The second uses a low-power actuator to control the apparent inertia by driving the device along its direction of motion. We illustrate these ideas for a two-link cobot we have built for experiments in human motor control and rehabilitation. For the actuated control method, we show that the power actuator can be relatively low power compared to the actuators of a traditional robot performing similar tasks.

1.
Colgate
,
J. E.
,
Wannasuphoprasit
,
W.
, and
Peshkin
,
M.
, 1996, “
Cobots: Robots for Collaboration With Human Operators
,”
International Mechanical Engineering Congress and Exposition
,
ASME
,
New York
, pp.
433
440
.
2.
Moore
,
C. A.
,
Peshkin
,
M. A.
, and
Colgate
,
J. E.
, 2003, “
Cobot Implementation of Virtual Paths and 3D Virtual Surfaces
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
2
), pp.
347
351
.
3.
Wannasuphoprasit
,
W.
,
Akella
,
P.
,
Peshkin
,
M.
, and
Colgate
,
J. E.
, 1998, “
Cobots: A Novel Material Handling Technology
,”
Proceedings of IMECE
,
ASME
,
New York
, pp.
171
178
.
4.
Faulring
,
E.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
, 2004, “
A High Performance 6-DOF Haptic Cobot
,”
IEEE International Conference on Robotics and Automation
,
IEEE
,
New York
, Vol.
2
, pp.
1980
1985
.
5.
Yambay Valiente
,
M. Y.
, 2001, “
Design of a Unicycle Cobot
,” M.S. thesis, Northwestern University, Evanston, IL.
6.
Moore
,
C. A.
, 1997, “
Continuously Variable Transmission for Serial Link Cobot Architectures
,” M.S. thesis, Northwestern University.
7.
Colgate
,
J. E.
,
Peshkin
,
M. A.
, and
Wannasuphoprasit
,
W.
, 1996, “
Nonholonomic Haptic Display
,”
IEEE International Conference on Robotics and Automation, Minneapolis
,
IEEE
,
New York
, Vol.
1
, pp.
539
544
.
8.
Moore
,
C. A.
,
Peshkin
,
M. A.
, and
Colgate
,
J. E.
, 1999, “
Design of a 3R Cobot Using Continuously Variable Transmissions
,”
IEEE International Conference on Robotics and Automation
,
4
, pp.
3249
3254
.
9.
Wannasuphoprasit
,
W.
,
Gillespie
,
R. B.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
, 1997, “
Cobot Control
,”
IEEE International Conference on Robotics and Automation
,
IEEE
,
New York
, pp.
3571
3577
.
10.
Walker
,
I. D.
, 1994, “
Impact Configurations and Measures for Kinematically Redundant and Multiple Armed Robot Systems
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
5
), pp.
670
683
.
11.
Lee
,
D.
, and
Li
,
P. Y.
, 2003, “
Passive Bilateral Feedforward Control of Linear Dynamically Similar Teleoperated Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
3
), pp.
443
456
.
12.
Lee
,
D.
, and
Li
,
P. Y.
, 2005, “
Passive Bilateral Control and Tool Dynamics Rendering for Nonlinear Mechanical Teleoperators
,”
IEEE Transactions on Robotics
,
21
(
5
), pp.
936
951
.
13.
Faulring
,
E.
,
Lynch
,
K. M.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
, 2005, “
Haptic Interaction With Constrained Dynamic Systems
,”
IEEE International Conference on Robotics and Automation
,
IEEE
,
New York
, pp.
2469
2475
.
14.
Worsnopp
,
T.
, 2003, “
Design of a Unicycle Cobot Controller
,” M.S. thesis, Northwestern University, Evanston, IL.
16.
Matsuoka
,
Y.
, and
Miller
,
L. C.
, 1999, “
Domestic Rehabilitation and Learning of Task-Specific Movements
,”
International Conf on Rehabilitation Robotics
, pp.
177
182
.
17.
Rahman
,
T.
,
Ramanathan
,
R.
,
Seliktar
,
R.
, and
Harwin
,
W.
, 1995, “
A Simple Technique to Passively Gravity-Balance Articulated Mechanisms
,”
J. Mech. Des.
1050-0472,
117
(
4
), pp.
655
658
.
18.
Asada
,
H.
, 1983, “
A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
105
, pp.
751
756
.
19.
Khatib
,
O.
, and
Burdick
,
J.
, 1987, “
Dynamic Optimization in Manipulator Design: The Operational Space Formulation
,”
The International Journal of Robotics and Automation
,
2
(
2
), pp.
90
98
.
20.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
.
21.
Pan
,
P.
,
Peshkin
,
M. A.
,
Colgate
,
J. E.
, and
Lynch
,
K. M.
, 2004, “
Static Single-Arm Force Generation With Kinematic Constraints
,”
J. Neurophysiol.
0022-3077,
93
, pp.
2752
2765
.
22.
Scheidt
,
R. A.
,
Reinkensmeyer
,
D. J.
,
Conditt
,
M. A.
,
Rymer
,
W. Z.
, and
Mussa-Ivaldi
,
F. A.
, 2000, “
Persistence of Motor Adaptation During Constrained, Multi-Joint, Arm Movements
,”
Bull. Am. Phys. Soc.
0003-0503,
84
(
2
), pp.
853
862
.
You do not currently have access to this content.