Miniature and energy-efficient propulsion systems hold the key to maturing the technology of swimming microrobots. In this paper, two new methods of propulsion inspired by the motility mechanism of prokaryotic and eukaryotic microorganisms are proposed. Hydrodynamic models for each of the two methods are developed, and the optimized design parameters for each of the two propulsion modes are demonstrated. To validate the theoretical result for the prokaryotic flagellar motion, a scaled-up prototype of the robot is fabricated and tested in silicone oil, using the Buckingham PI theorem for scaling. The proposed propulsion methods are appropriate for the swimming robots that are intended to swim in low-velocity fluids.
Issue Section:
Technical Papers
1.
Fukuda
, T.
, Kawamoto
, A.
, Arai
, F.
, and Matsuura
, H.
, 1994, “Mechanism and Swimming Experiment of Micro Mobile Robot in Water
,” Proc. of IEEE International Workshop on Micro Electro Mechanical Systems (MEMS’94)
, IEEE
, New York
, pp. 273
–278
.2.
Guo
, S.
, Hasegaw
, Y.
, Fukuda
, T.
, and Asaka
, K.
, 2001, “Fish—Like Underwater Microrobot With Multi DOF
,” Proceedings of 200 International Symposium on Micromechatronics and Human Science
, IEEE
, Nahoya, Japan
, pp. 63
–68
.3.
Jung
, J.
, Kim
, B.
, Tak
, Y.
, and Park
, J.
, 2003, “Undulatory Tadpole Robot (TadRob) Using Ionic Polymer Metal Composite (IMPC) Actuator
,” Proceedings of 2003 IEEE International Conference on Intelligent Robots and Systems
, IEEE
, New York
, pp. 2133
–2138
.4.
Zhang
, Y.
, Wang
, Q.
, Zhang
, P.
, Wang
, X.
, and Mei
, T.
, 2004, “Dynamic Analysis and Experiment of a 3mm Swimming Microrobot
,” Proceedings of 2004 IEEE International Conference on Intelligent Robots and Systems
, IEEE
, New York
, pp. 1746
–1750
.5.
Honda
, T.
, Arai
, K.
, and Ishiyama
, K.
, 1999, “Effect of Micro Machine Shape on Swimming Properties of the Spiral-Type Magnetic Micro-Machine
,” IEEE Trans. Magn.
0018-9464, 35
, pp. 3688
–3690
.6.
Behkam
, B.
, and Sitti
, M.
, 2004, “E. Coli Inspired Propulsion for Swimming Microrobots
,” IMECE2004-59621, Proceedings of 2004 ASME International Mechanical Engineering Conference and Exposition
, ASME
, New York
.7.
Edd
, J.
, Payen
, S.
, Rubinsky
, B.
, Stoller
, M. L.
, and Sitti
, M.
, 2003, “Biomimetic Propulsion for a Swimming Surgical Microrobot
,” Proceedings of 2004 IEEE International Conference on Intelligent Robots and System
, IEEE
, New York
, pp. 2583
–2588
8.
Darnton
, N.
, Turner
, L.
, Breuer
, K.
, and Berg
, H.
, 2004, “Moving Fluid With Bacterial Carpets
,” Biophys. J.
0006-3495, 86
, pp. 1863
–1870
.9.
Berg
, H.
, 2003, “The Rotary Motor of Bacterial Flagella
,” Annu. Rev. Biochem.
0066-4154, 72
, pp. 19
–54
.10.
Leifson
, E.
, 1960, Atlas of Bacterial Flagellation
, Academic Press
, New York
.11.
Chwang
, T.
, and Wu
, T.
, 1971, “A Note on the Helical Movement of Microorganisms
,” Proc. R. Soc. London, Ser. B
0962-8452, 178
, pp. 327
–346
.12.
Hancock
, G.
, 1953, “The Self-Propulsion of Microscopic Organisms Through Liquids
,” Proc. R. Soc. London, Ser. A
1364-5021, 217
, pp. 96
–121
.13.
Brennen
, C.
, and Winet
, H.
, 1977, “Fluid Mechanics of Propulsion by Cilia and Flagella
,” Annu. Rev. Fluid Mech.
0066-4189, 9
, pp. 339
–398
.14.
Fox
, R.
, McDonald
, A.
, and Pritchard
, P.
, 2004, Introduction to Fluid Mechanics
, Wiley
, New York
, pp. 273
–300
.15.
Gray
, J.
, and Hancock
, G.
, 1955, “The Propulsion of Sea-Urchin Spermatozoa
,” J. Exp. Biol.
0022-0949, 32
, pp. 802
–814
.16.
Vogel
, S.
, 2003, Comparative Biomechanics: Life’s Physical World
, Princeton University Press
, Princeton
, pp. 227
–244
.17.
Johnson
, R. E.
, and Brokaw
, C. J.
, 1979, “Flagellar Hydrodynamics: A Comparison Between Resistive-Force Theory and Slender-Body Theory
,” Biophys. J.
0006-3495, 125
, pp. 113
–127
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.