The first functional load-carrying and energetically autonomous exoskeleton was demonstrated at the University of California, Berkeley, walking at the average speed of 1.3ms(2.9mph) while carrying a 34kg(75lb) payload. Four fundamental technologies associated with the Berkeley lower extremity exoskeleton were tackled during the course of this project. These four core technologies include the design of the exoskeleton architecture, control schemes, a body local area network to host the control algorithm, and a series of on-board power units to power the actuators, sensors, and the computers. This paper gives an overview of one of the control schemes. The analysis here is an extension of the classical definition of the sensitivity function of a system: the ability of a system to reject disturbances or the measure of system robustness. The control algorithm developed here increases the closed-loop system sensitivity to its wearer’s forces and torques without any measurement from the wearer (such as force, position, or electromyogram signal). The control method has little robustness to parameter variations and therefore requires a relatively good dynamic model of the system. The trade-offs between having sensors to measure human variables and the lack of robustness to parameter variation are described.

1.
Chu
,
A.
,
Kazerooni
,
H.
, and
Zoss
,
A.
, 2005, “
On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE Int. Conf. on Robotics and Automation
, April, Barcelona.
2.
Kazerooni
,
H.
,
Racine
,
J.-L.
,
Huang
,
L.
, and
Steger
,
R.
, 2005, “
On the Control of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE Int. Conf. on Robotics and Automation
, April, Barcelona.
3.
Zoss
,
A.
, and
Kazerooni
,
H.
, 2005, “
On the Mechanical Design of the Berkeley Lower Extremity Exoskeleton
,”
IEEE Intelligent Robots and Systems Conference
, August, Edmunton.
4.
Kazerooni
,
H.
, 1990, “
Human-Robot Interaction via the Transfer of Power and Information Signals
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
20
(
2
), pp.
450
463
.
5.
Kazerooni
,
H.
, and
Guo
,
J.
, 1993, “
Human Extenders
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
(
2B
), pp.
281
289
.
6.
Kazerooni
,
H.
, and
Mahoney
,
S.
, 1991, “
Dynamics and Control of Robotic Systems Worn By Humans
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
(
3
), pp.
379
387
.
7.
Kazerooni
,
H.
, and
Her
,
M.
, 1994, “
The Dynamics and Control of a Haptic Interface Device
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
4
), pp.
453
464
.
8.
Kazerooni
,
H.
, and
Snyder
,
T.
, 1995, “
A Case Study on Dynamics of Haptic Devices: Human Induced Instability in Powered Hand Controllers
,”
J. Guid. Control Dyn.
0731-5090,
18
(
1
), pp.
108
113
.
9.
Mizen
,
N. J.
, 1965, “
Preliminary Design for the Shoulders and Arms of a Powered, Exoskeletal Structure
,” Cornell Aeronautical Laboratory Report No. VO-1692-V-4.
10.
Groshaw
,
P. F.
, General Electric Co., 1969, “
Hardiman I Arm Test, Hardiman I Prototype
,” General Electric, Schenectady, NY, Report No. S-70-1019.
11.
General Electric Co.
, 1968, “
Hardiman I Prototype Project, Special Interim Study
,” General Electric Schenectady, NY, Report No. S-68-1060.
12.
Makinson
,
B. J.
,
General Electric Co.
, 1971, “
Research and Development Prototype for Machine Augmentation of Human Strength and Endurance, Hardiman I Project
,” General Electric, Schenectady, NY, Report No. S-71-1056.
13.
Mosher
,
R. S.
, 1960, “
Force-Reflecting Electrohydraulic Manipulator
,”
Electro-Technol.
0013-4635, pp.
138
141
.
14.
Vukobratovic
,
M.
,
Hristic
,
D.
, and
Stojiljkovic
,
Z.
, 1974, “
Development of Active Anthropomorphic Exoskeleton
,”
Med. Biol. Eng.
0025-696X,
12
, pp.
66
80
.
15.
Vukobratovic
,
M.
,
Ciric
,
V.
, and
Hristic
,
D.
, 1972, “
Contribution to the Study of Active Exoskeletons
,”
Proc. of the 5th IFAC Congress
,
Paris
.
16.
Hirai
,
K.
,
Hirose
,
M.
,
Haikawa
,
Y.
, and
Takenaka
,
T.
, 1998, “
The Development of Honda Humanoid Robot
,”
Proc. of the 1998 IEEE International Conference on Robotics & Automation
,
Leuven
, Belgium,
IEEE
,
New York
, pp.
1321
1326
.
17.
Colombo
,
G.
,
Jorg
,
M.
, and
Dietz
,
V.
, 2000, “
Driven Gait Orthosis to do Locomotor Training of Paraplegic Patients
,”
22nd Annual International Conf. of the IEEE-EMBS
, Chicago, July 23–28.
18.
Pratt
,
J.
,
Krupp
,
B.
,
Morse
,
C.
, and
Collins
,
S.
, 2004, “
The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking
,”
IEEE Intl. Conf. on Robotics and Automation
, New Orleans.
19.
Kawamoto
,
H.
,
Kanbe
,
S.
, and
Sankai
,
Y.
, 2003, “
Power Assist Method for HAL-3 Estimating Operator’s Intention Based on Motion Information
,”
Proc. of 2003 IEEE Workshop on Robot and Human Interactive Communication
, Millbrae, CA,
IEEE
,
New York
, pp.
67
72
.
20.
Kawamoto
,
H.
, and
Sankai
,
Y.
, 2002, “
Power Assist System HAL-3 for gait Disorder Person
,” ICCHP, July, Austria.
21.
Kazerooni
,
H.
, 1996, “
The Human Power Amplifier Technology at the University of California, Berkeley
,”
Int. J. Rob. Autom.
0826-8185,
19
, pp.
179
187
.
22.
McGee
,
T.
,
Raade
,
J.
, and
Kazerooni
,
H.
, 2004, “
Monopropellant-Driven Free Piston Hydraulic Pump for Mobile Robotic Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
1
), pp.
75
81
.
23.
Raade
,
J.
, and
Kazerooni
,
H.
, 2005, “
Analysis and Design of a Novel Power Source for Mobile Robots
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
2
(
3
), pp.
226
232
.
24.
Amundsen
,
K.
,
Raade
,
J.
,
Harding
,
N.
, and
Kazerooni
,
H.
, 2005, “
Hybrid Hydraulic-Electric Power Unit for Field and Service Robots
,”
IEEE Intelligent Robots and Systems Conference
, August, Edmunton.
25.
Kim
,
S.
,
Anwar
,
G.
, and
Kazerooni
,
H.
, 2004, “
High-Speed Communication Network for Controls With Application on the Exoskeleton
,”
American Control Conference
, Boston, June.
26.
Kim
,
S.
, and
Kazerooni
,
H.
, 2004, “
High Speed Ring-Based Distributed Networked Control System for Real-Time Multivariable Applications
,”
ASME International Mechanical Engineering Congress
, Anaheim, November.
27.
Berstein
,
N. A.
, 1967,
The Control and Regulation of Movements
,
Pergamon Press
,
London
.
28.
Bizzi
,
E.
,
Hogan
,
N.
,
Mussa-Ivaldi
,
F. A.
, and
Giszter
,
S.
, 1992, “
Does the Nervous System Use Equilibrium Point Control to Guide Single and Multiple Joint Movements?
,”
Behav. Brain Sci.
0140-525X,
15
, pp.
603
613
.
29.
Wilkie
,
D. R.
, 1950, “
The Relation Between Force and Velocity in Human Muscle
,”
J. Physiol. (London)
0022-3751,
K110
, pp.
248
280
.
30.
Winters
,
J. M.
, and
Stark
,
L.
, 1985, “
Analysis of Fundamental Human Movement Patterns Through the Use on In-Depth Antagonistic Muscle Models
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME32
(
10
), pp.
826
839
.
31.
Rose
,
J.
, and
Gamble
,
J. G.
, 1994,
Human Walking
,
2nd ed.
,
Williams & Wilkins
,
Baltimore
, p.
26
.
32.
Woodson
,
W.
,
Tillman
,
B.
, and
Tillman
,
P.
, 1992,
Human Factors Design Handbook
,
McGraw-Hill
,
New York
, pp.
550
552
.
33.
Kirtley
,
C.
, 2005, “
CGA Normative Gait Database: Hong Kong Polytechnic University, 10 Young Adults
,” Accessed August, http://guardian.curtin.edu.au/cga/data/http://guardian.curtin.edu.au/cga/data/.
34.
Linskell
,
J.
, “
CGA Normative Gait Database: Limb Fitting Centre, Dundee, Scotland, Young Adult
,” Available at http://guardian.curtin.edu.au/cga/data/http://guardian.curtin.edu.au/cga/data/.
35.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
, 2002, “
Stair Ascent and Descent at Different Inclinations
,”
Gait and Posture
0966-6362,
15
, pp.
32
34
.
You do not currently have access to this content.