In this work we introduce a methodology for the design of multivariable gain-scheduled controllers for nonlinear systems and an approach for determining the local stability of a nonlinear closed loop system. The gain-scheduled global control is designed by scheduling different local controllers using a Local Controller Network. The individual local controllers are assumed to be LTI MIMO controllers that can be designed via some user-specified multivariable method. In this paper, different portions of outputs from different local controllers are combined into the total control by using interpolation-weighting functions. The variation in the control behavior as a result of the scheduling variable is posed in a robust control framework. The dynamics of the scheduling variables are incorporated into the global control framework as an unstructured uncertainty. This allows the use of computational tools to analyze the stability of the overall global system and verify whether or not a given gain-scheduled approach will remain stable locally. To demonstrate the practical significance of the method, a multivariable electrohydraulic earthmoving powertrain problem is solved using the approach. The nonlinear power train was locally modeled as an LTI MIMO system and a local LTI MIMO controller was designed at each operating point using an H algorithm. The analysis approach introduced is utilized to verify system stability and is supported closely by experimental results.

1.
Rugh
,
W. J.
, 1991, “
Analytical Framework for Gain Scheduling
,”
IEEE Control Syst. Mag.
0272-1708,
11
, pp.
79
84
.
2.
Astrom
,
K.
, and
Wittenmark
,
B.
, 1995,
Adaptive Control
,
Addison-Wesley
, Reading, MA.
3.
Khalil
,
H. K.
, 1996,
Nonlinear Systems
,
Prentice–Hall
, Englewood Cliffs, NJ,
2nd ed.
4.
Leith
,
D. J.
, and
Leithead
,
W. E.
, 2000, “
Survey of Gain-Scheduling Analysis and Design
,”
Int. J. Control
0020-7179,
73
, pp.
1001
1025
.
5.
Guo
,
D.
, and
Rugh
,
W. J.
, 1992, “
An Approach to Gain Scheduling on Fast Variables
,” presented at the
31st Conference on Decision and Control
, Tucson, AZ, pp.
759
763
.
6.
Hunt
,
K. J.
,
Johansen
,
T. A.
,
Kalkkuhl
,
J.
,
Fritz
,
H.
, and
Gottsche
,
T.
, 2000, “
Speed Control Design for an Experimental Vehicle Using a Generalized Gain Scheduling Approach
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
, pp.
381
395
.
7.
Lawrence
,
D. A.
, and
Rugh
,
W. J.
, 1995, “
Gain Scheduling Dynamic Linear Controllers for a Nonlinear Plant
,”
Automatica
0005-1098,
31
, pp.
381
390
.
8.
Rugh
,
W. J.
, and
Shamma
,
J. S.
, 2000, “
Research on Gain Scheduling
,”
Automatica
0005-1098,
36
, pp.
1401
1425
.
9.
Nichols
,
R. A.
,
Reichert
,
R. T.
, and
Rugh
,
W. J.
, 1993, “
Gain Scheduling for H-infinity Controllers: A Flight Control Example
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
1
, pp.
69
79
.
10.
Hyde
,
R. A.
, and
Keith
,
G.
, 1993, “
The Application of Scheduled H/Sub Infinity/Controllers to a VSTOL Aircraft
,”
IEEE Trans. Autom. Control
0018-9286,
38
, pp.
1021
1039
.
11.
Jiang
,
J.
, 1994, “
Optimal Gain Scheduling Controller for a Diesel Engine
,”
IEEE Control Syst. Mag.
0272-1708,
14
, pp.
42
48
.
12.
Hunt
,
K. J.
,
Kalkkuhl
,
J.
,
Fritz
,
H.
,
Johansen
,
T. A.
, and
Gottsche
,
T.
, 1998, “
Experimental Comparison of Nonlinear Control Strategies for Vehicle Speed Control
,” presented at
Control Applications
,
Proceedings of the 1998 IEEE International Conference on the Dept. of Mech. Eng.
, Glasgow Univ., UK, Vol.
2
, pp.
1006
1010
.
13.
Packard
,
A.
, and
Kantner
,
M.
, 1996, “
Gain Scheduling the LPV Way
,” presented at
Decision and Control
,
Proceedings of the 35th IEEE
, Vol.
4
, pp.
3938
3941
.
14.
Shamma
,
J. S.
, and
Athans
,
M.
, 1992, “
Gain Scheduling: Potential Hazards and Possible Remedies
,”
IEEE Control Syst. Mag.
0272-1708,
12
, pp.
101
107
.
15.
Hingwe
,
P.
,
Tan
,
H.-S.
,
Packard
,
A. K.
, and
Tomizuka
,
M.
, 2002, “
Linear Parameter Varying Controller For Automated Lane Guidance: Experimental Study on Tractor-Trailers
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
, pp.
793
806
.
16.
Rasmussen
,
B. P.
, and
Alleyne
,
A.
, 2004, ”
Control-Oriented Modeling of Transcritical Vapor Compression Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
54
64
.
17.
Lawrence
,
D. A.
, and
Rugh
,
W. J.
, 1993, “
Gain Scheduling Dynamic Linear Controllers for a Nonlinear Plant
,” presented at the
32rd Conference on Decision and Control
, San Antonio, Texas, pp.
1024
1029
.
18.
Packard
,
A.
,
Becker
,
G.
,
Philbrick
,
D.
, and
Balas
,
G.
, 1993, “
Control of Parameter-Dependent Systems: Applications to H-Infinity Gain-Scheduling
,” presented at the
1st IEEE Regional Conference on Aerospace Control Systems
, pp.
329
333
.
19.
Gawthrop
,
P. J.
, 1995, “
Continuous-Time Local State Local Model Networks
,” presented at
Systems, Man and Cybernetics, 1995, Intelligent Systems for the 21st Century, IEEE International Conference on the Centre for Syst. & Control.
, Glasgow Univ., UK, Vol.
1
, pp.
852
857
.
20.
Shamma
,
J. S.
, and
Athans
,
M.
, 1988, “
Guaranteed Properties for Nonlinear Gain Scheduled Control Systems
,” presented at the
27th Conference on Decision and Control
, Austin, Texas, pp.
2202
2208
.
21.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 1996,
Multivariable Feedback Control: Analysis and Design
,
Wiley and Sons
, New York.
22.
Dullerud
,
G. E.
, and
Paganini
,
F. G.
, 2000,
A Course in Robust Control Theory: A Convex Approach
,
Springer-Verlag
, New York.
23.
Zhou
,
K.
, and
Doyle
,
J. C.
, 1998,
Essentials of Robust Control
,
Prentice–Hall
, Upper Saddle River, NJ.
24.
Pellanda
,
P. C.
,
Apkarian
,
P.
, and
Alazard
,
D.
, 2000, “
Gain-Scheduling Through Continuation of Observer-Based Realizations—Applications to H-infinity and μ Controllers
,” presented at the
39th IEEE Conference on Decision and Control
, Sydney, Australia, pp.
2787
2792
.
25.
Takagi
,
T.
, and
Sugeno
,
M.
, 1985, “
Fuzzy Identification of Systems and its Application to Modeling and Control
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
15
, pp.
116
132
.
26.
Hunt
,
K. J.
, and
Johansen
,
T. A.
, 1997, “
Design and Analysis of Gain-Scheduled Control Using Local Controller Networks
,”
Int. J. Control
0020-7179,
66
, pp.
619
651
.
27.
Singh
,
S.
, 1997, “
State of the Art in Automation of Earthmoving
,”
J. Aerosp. Eng.
0893-1321,
10
, pp.
179
188
.
28.
Haycraft
,
W. R.
, 2000,
Yellow Steel: The Story of the Earthmoving Equipment Industry
,
University of Illinois Press
, Urbana, IL.
29.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1996,
Robust and Optimal Control
,
Prentice–Hall
, Upper Saddle River, NJ.
30.
Prasetiawan
,
E. A.
,
Zhang
,
R.
,
Alleyne
,
A. G.
, and
Tsao
,
T. C.
, 1999, “
Modeling and Control Design of a Powertrain Simulation Testbed For Earthmoving Vehicles
,” presented at the
International Mechanical Engineering Congress and Exposition: The Fluid Power and Systems Technology Division
, Nashville, TN, pp.
139
146
.
31.
Prasetiawan
,
E. A.
,
Zhang
,
R.
, and
Alleyne
,
A. G.
, 2000, “
Modeling and Coordinated Control of An Earthmoving Vehicle Powertrain
,” presented at the
International Mechanical Engineering Congress and Exposition: The Fluid Power and Systems Technology Division
, Orlando, FL, pp.
289
296
.
32.
Zhang
,
R.
,
Prasetiawan
,
E.
, and
Alleyne
,
A.
, 2001, “
Modeling and Multivariable Control of an Earthmoving Vehicle Powertrain
,” presented at the
International Mechanical Engineering Congress and Exposition: Dynamic Systems and Control
, New York, NY, pp.
DSC
-
24564
in CD-ROM.
33.
Zhang
,
R.
,
Prasetiawan
,
E. A.
,
Alleyne
,
A. G.
, and
Thacher
,
R.
, 2001, “
Modeling and Coordinated Control of a Multi-Load Earthmoving Vehicle Powertrain
,”
presented at the European Control Conference 2001
, Porto, Portugal, pp.
1577
1582
.
34.
Zhang
,
R.
,
Alleyne
,
A. G.
, and
Prasetiawan
,
E. A.
, 2002, “
Modeling and H2/H-infinity MIMO Control of an Earthmoving Vehicle Powertrain
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
625
636
.
35.
Prasetiawan
,
E. A.
, 2000, “
Modeling, Simulation and Control of an Earthmoving Vehicle Powertrain Simulator
,” in
Mechanical and Industrial Engineering
,
University of Illinois at Urbana–Champaign
, Urbana, IL.
36.
Zhang
,
R.
, 2002, “
Multivariable Robust Control of Nonlinear Systems With Application to an Electro-Hydraulic Powertrain
,” Ph.D. in Mechanical Engineering. Urbana: University of Illinois at Urbana-Champaign, Urbana, IL, p. 255.
You do not currently have access to this content.