An optimal information fusion criterion weighted by scalars is presented in the linear minimum variance sense. Based on this fusion criterion, a scalar weighting information fusion decentralized Kalman filter is given for discrete time-varying linear stochastic control systems measured by multiple sensors with colored measurement noises, which is equivalent to an information fusion Kalman predictor for systems with correlated noises. It has a two-layer fusion structure with fault tolerant and robust properties. Its precision is higher than that of each local filter. Compared with the fusion filter weighted by matrices and the centralized filter, it has lower precision when all sensors are faultless, but has reduced computational burden. Simulation researches show the effectiveness.

1.
Willner
D.
,
Chang
,
C. B.
, and
Dunn
,
K. P.
, 1976, “
Kalman Filter Algorithm for a Multisensor System
,”
Proc. IEEE Conf. Decision and Control
, Clearwater, Florida, pp.
570
574
.
2.
Bar-Shalom
,
Y.
, 1981, “
On the Track-to-Track Correlation Problem
,”
IEEE Trans. Autom. Control
0018-9286,
26
, pp.
571
572
.
3.
Carlson
,
N. A.
, 1990, “
Federated Square Root Filter for Decentralized Parallel Processes
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
26
, pp.
517
525
.
4.
Roy
,
S.
, and
Hashemipour
,
H. R.
, 1991, “
Square Root Parallel Kalman Filtering Using Reduced-Order Local Filters
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
27
, pp.
276
288
.
5.
Roy
,
S.
, and
Iltis
R. A.
, 1991, “
Decentralized Linear Estimation in Correlated Measurement Noise
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
27
, pp.
939
941
.
6.
Saha
,
R. K.
, 1996, “
Track to Track Fusion with Dissimilar Sensors
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
32
, pp.
1021
1029
.
7.
Saha
,
R. K.
, and
Chang
,
K. C.
, 1998, “
An Efficient Algorithm for Multisensor Track Fusion
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
34
, pp.
200
210
.
8.
Kim
,
K. H.
, 1994, “
Development of Track to Track Fusion Algorithm
,”
Proceeding of the American Control Conference
, Maryland, pp.
1037
1041
.
9.
Chen
,
H.
,
Kirubarajan
,
T.
, and
Bar-Shalom
,
Y.
2003, “
Performance Limits of Track-to-Track Fusion vs. Centralized Estimation: Theory and Application
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
39
, pp.
386
398
.
10.
Vorobyov
,
S. A.
,
Cichocki
,
A.
, and
Bodyanskiy
,
Y. V.
, 2001, “
Adaptive Noise Cancellation for Multi-Sensory Signals
,”
Fluct. Noise Lett.
0219-4775,
1
, pp.
R13
R24
.
11.
Deng
,
Z. L.
, and
Qi
,
R. B.
, 2000, “
Multi-Sensor Information Fusion Suboptimal Steady-State Kalman Filter
,”
Chinese Science Abstracts
,
6
, pp.
183
184
.
12.
Xu
,
N. S.
, 2001,
Stochastic Signal Estimation and System Control
,
Beijing Industry Univ. Press
, Beijing, China, Chap. 1, pp.
7
8
.
13.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
, 1979,
Optimal Filtering
,
Prentice–Hall
, Englewood Cliffs, NJ.
14.
Willsky
,
A. S.
, 1976, “
A Survey of Design Method for Failure Detection in Dynamic Systems
,”
Automatica
0005-1098,
12
, pp.
601
611
.
15.
Mehra
,
R. K.
, and
Peschon
,
J.
, 1971, “
An Innovation Approach to Fault Detection and Diagnosis in Dynamic Systems
,”
Automatica
0005-1098,
7
, pp.
637
640
.
You do not currently have access to this content.