Our aim in the present research study is to develop a systematic natural observer design framework for vector second-order systems in the presence of time-scale multiplicity. Specifically, vector second-order mechanical systems are considered along with fast sensor dynamics, and the primary objective is to obtain accurate estimates of the unmeasurable slow system state variables that are generated by an appropriately designed model-based observer. Within a singular perturbation framework, the proposed observer is designed on the basis of the system dynamics that evolves on the slow manifold, and the dynamic behavior of the estimation error that induces is analyzed and mathematically characterized in the presence of the unmodeled fast sensor dynamics. It is shown, that the observation error generated by neglecting the (unmodeled) fast sensor dynamics is of order O(ε), where ε is the singular perturbation parameter and a measure of the relative speed/time constant of the fast (sensor) and the slow component (vector second-order system) of the overall instrumented system dynamics. Finally, the performance of the proposed method and the convergence properties of the natural observer designed are evaluated in an illustrative example of a two-degree of freedom mechanical system.

1.
Anderson
,
B. D. O.
, and
Moore
,
J. B.
, 1990,
Optimal Control: Linear Quadratic Methods
,
Prentice–Hall Information and System Science Series
,
Prentice–Hall
, Englewood Cliffs, NJ.
2.
Luenberger
,
D. G.
, 1971, “
An Introduction to Observers
,”
IEEE Trans. Autom. Control
0018-9286,
16
, pp.
596
602
.
3.
Astolfi
,
A.
, and
Praly
,
L.
, 2003, “
Global Complete Observability and Output-to-State Stability Imply the Existence of a Globally Convergent Observer
,” in
Proceedings of the 2003 IEEE Decision and Control Conference
, Maui, Hawaii, 9–12 December, pp.
1562
-
1568
.
4.
Krener
,
A. J.
, and
Isidori
,
A.
, 1983, “
Linearization by Output Injection and Nonlinear Observers
,”
Syst. Control Lett.
0167-6911,
3
, p.
47
.
5.
Krener
,
A. J.
, and
Xiao
,
M.
, 2002, “
Nonlinear Observer Design in the Siegel Domain
,”
SIAM J. Control Optim.
0363-0129,
41
, p.
932
.
6.
Gauthier
,
J. P.
,
Hammouri
,
H.
, and
Othman
,
S.
, 1992, “
A Simple Observer For Nonlinear Systems: Applications to Bioreactors
,”
IEEE Trans. Autom. Control
0018-9286,
37
, p.
875
.
7.
Guay
,
M.
, 2002, “
Observer Linearization by Output-Dependent Time-Scale Transformations
,”
IEEE Trans. Autom. Control
0018-9286,
25
, p.
277
.
8.
Tsinias
,
J.
, 1990, “
Further Results on the Observer Design Problem
,”
Syst. Control Lett.
0167-6911,
14
, p.
411
.
9.
Kazantzis
,
N.
, and
Kravaris
,
C.
, 1998, “
Nonlinear Observer Design Using Lyapunov’s Auxiliary Theorem
,”
Syst. Control Lett.
0167-6911,
34
, p.
241
.
10.
Kim
,
K.
,
Joh
,
J.
,
Langari
,
R.
, and
Kwon
,
W.
, 1991, “
LMI-Based Design of T-S Fuzzy Controllers Using Fuzzy Estimators
, in
Proceedings of the 1999 IEEE Decision and Control Conference
, Phoenix, Arizona, 7–10, December, pp.
4343
4348
.
11.
Parlos
,
A. G.
,
Menon
,
S. K.
, and
Atiya
,
A.
2001, “
An Algorithmic Approach to Adaptive State Filtering Using Recurrent Neural Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
12
, pp.
1411
1432
.
12.
Kreisselmeier
,
G.
, and
Engel
,
R.
, 2003, “
Nonlinear Observers For Autonomous Lipschitz Continuous Systems
,”
IEEE Trans. Autom. Control
0018-9286,
48
, p.
451
.
13.
Skelton
,
R. E.
,
Dynamic Systems Control: Linear Systems Analysis and Synthesis
,
Wiley
, NY, 1988.
14.
Inman
,
D. J.
, 1989,
Vibration with Control, Measurement, and Stability
,
Prentice–Hall
, Englewood Cliffs, NJ.
15.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
and
Zang
,
T. A.
, 1988,
Spectral Methods in Fluid Dynamics
,
Springer Series in Computational Physics
,
Springer-Verlag
, NY.
16.
Gawronski
,
W.
, 1998,
Dynamics and Control of Structures, A Modal Approach
,
Springer-Verlag
, NY.
17.
Meirovitch
,
L.
, 1980,
Computational Methods in Structural Dynamics
,
Sijthoff and Noordhoff, Alphen aan den Rijn
, The Netherlands.
18.
Demetriou
,
M. A.
, 2004, “
Natural Second-Order Observers For Second Order-Distributed Parameter Systems
,”
Syst. Control Lett.
0167-6911,
51
, pp.
225
-
234
.
19.
Balas
,
M. J.
, 1999, ”
Do All Linear Flexible Structures Have Convergent Second-Order Observers?
,”
J. Guid. Control Dyn.
0731-5090,
22
, pp.
905
908
.
20.
Suranthiran
,
S.
,
Jayasuriya
,
S.
, and
Kotzebue
,
M. H.
, 2003, “
Attaining High Operating Bandwidth Using Sensor Arrays and Frequency Domain Methods
,” in
Proceedings of the 2003 IEEE Decision and Control Conference
, Maui, Hawaii, 9–12 December, pp.
4208
4213
.
21.
Mahmoud
,
M. S.
, and
Khalil
,
H. K.
, 2002,“
Robustness of High-Gain Observer-Based Nonlinear Controllers to Unmodeled Actuators and Sensors
,”
Automatica
0005-1098,
38
, p.
361
.
22.
Javid
,
H.
, 1980,
Observing the Slow States of a Singularly Perturbed System
,”
IEEE Trans. Autom. Control
0018-9286,
25
, pp.
277
280
.
23.
Khalil
,
H. K.
, 2002,
Nonlinear Systems
,
Prentice–Hall
, Englewood Cliffs, NJ,
3rd ed.
24.
Lancaster
,
P.
, 1966,
Lambda-matrices and Vibrating Systems
,
Pergamon Press
, Oxford.
25.
Hughes
,
P. C.
, and
Skelton
,
R. E.
, 1980, “
Controllability and Observability For Flexible Spacecraft
,”
J. Guid. Control Dyn.
0731-5090,
3
, pp.
452
-
459
.
26.
Hughes
,
P. C.
and
Skelton
,
R. E.
, 1980, “
Controllability and Observability of Linear Matrix Second Order Systems
,”
J. Appl. Mech.
0021-8936,
47
, pp.
415
-
420
.
27.
Laub
,
A. J.
, and
Arnold
,
W. F.
1984, “
Controllability and Observability Criteria For Multivariable Linear Second Order Models
,”
IEEE Trans. Autom. Control
0018-9286,
AC-29
, pp.
163
165
.
28.
Junkins
,
J. L.
, and
Kim
,
Y.
, 1993,
Introduction to Dynamics and Control of Flexible Structures
,
AIAA Education Series
, Washington, DC.
29.
Datta
,
B. N.
,
Elhay
,
S.
, and
Ram
,
Y. M.
An Algorithm For the Partial Multi-Input Pole Assignment Problem of a Second-Order Control System
,” in
Proceedings of the 35th Conference on Decision and Control
, Kobe, Japan, December 1996, pp.
2025
2029
.
30.
Datta
,
B. N.
,
Ram
,
Y. M.
, and
Sarkissian
,
D. R.
, “
Single-Input Partial Pole Assignment in Gyroscopic Quadratic Matrix and Operator Pencils
,” in
Proceedings of the 14th International Symposium of Mathematical Theory of Networks and Systems
, MTNS2000, Perpignan, France, 19–23 June 2000.
31.
Datta
,
B. N.
, and
Sarkissian
,
D. R.
, 1999, “
Multi-Input Partial Eigenvalue Assigmnent for the Symmetric Quadratic Pencil
, in
Proceedings of the Americal Control Conference
, San Diego, CA, June 1999, pp.
2244
2247
.
32.
Inman
,
D. J.
, and
Kress
,
A.
, 1995, “
Eigenstructure Assignment Via Inverse Eigenvalue Methods
,”
J. Guid. Control Dyn.
0731-5090,
18
, pp.
625
627
.
33.
Minas
,
C.
, and
Inman
,
D. J.
, 1991,
A Note on Pole Placement of Mechanical Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
113
, pp.
420
421
.
34.
Nichols
,
N. K.
, 2000, “
Robust Eigenstructure Assignment in Second-Order Control Systems
,” in
Proceedings of the 14th International Symposium of Mathematical Theory of Networks and Systems
, MTNS2000, Perpignan, France, 19–23 June.
35.
Oshman
,
Y.
,
Inman
,
D. J.
, and
Laub
,
A. J.
, 1989, “
Square Root State Estimation For Second-Order Large Space Structure Models
,”
J. Guid. Control Dyn.
0731-5090,
12
, pp.
698
-
708
.
36.
Ram
,
Y. M.
and
Inman
,
D. J.
, 1999, “
Optimal Control For Vibrating Systems
,”
Mech. Syst. Signal Process.
0888-3270,
13
, pp.
879
872
.
37.
Demetriou
,
M. A.
2001, “
Natural Observers For second-Order Lumped and Distributed Parameter Systems Using Parameter-Dependent Lyapunov Functions
, in
Proceedings of the Americal Control Conference
, Arlington, VA, 25–27 June, pp.
2503
2508
.
38.
Golub
,
G. H.
, and
Van Loan
,
C. F.
, 1996,
Matrix Computations
,
Johns Hopkins University Press
, Baltimore, MD,
3rd ed.
39.
Ioannou
,
P. A.
, and
Sun
,
J.
, 1995,
Robust Adaptive Control
,
Prentice–Hall
, Englewood Cliffs, NJ.
You do not currently have access to this content.