In literature, it is shown by Åström et al. that a sampled system may become nonminimum phase for sufficiently fast sampling, even though the continuous-time system is minimum phase. However, it is verified in this paper that the sampled system of a modal damping mass-dashpot-spring structural dynamics with sufficient condition B=CTΓ is minimum phase independent of the sampling period. From a control point of view, this significant result is essential and beneficial to the digital controllers design for a large-scale structure. In addition, it also provides a criterion to locate the sensors and actuators of a structural system.

1.
Paz
,
M.
, 1997,
Structural Dynamics: Theory and Computation
,
Chapman and Hall
, New York.
2.
Williams
,
T.
, and
Laub
,
A. J.
, 1992, “
Orthogonal Canonical Forms for Second-Order Systems
,”
IEEE Trans. Autom. Control
0018-9286,
37
(
7
), pp.
1050
1052
.
3.
Craig
,
R. R.
, 1981,
Structural Dynamics: An Introduction to Computer Methods
,
Wiley
, New York.
4.
Inniss
,
C.
, and
Williams
,
T.
, 2000, “
Sensitivity of the Zeros of Flexible Structures to Sensor and Actuator Location
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
1
), pp.
157
160
.
5.
Blachuta
,
M. J.
, 1999, “
On Zeros of Pulse Transfer Functions
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
6
), pp.
1229
1234
.
6.
Ishitobi
,
M.
, 2000, “
A Stability Condition of Zeros of Sampled Multivariable Systems
,”
IEEE Trans. Autom. Control
0018-9286,
45
(
2
), pp.
295
299
.
7.
Ishitobi
,
M.
, and
Liang
,
S.
, 2004, “
On Zeros of Discrete-Time Models for Collocated Mass-Damper-Spring Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
1
), pp.
205
210
.
8.
Weller
,
S. R.
, 1999, “
Limiting Zeros of Decouplable MIMO Systems
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
1
), pp.
129
134
.
9.
Hagiwara
,
T.
,
Yuasa
,
T.
, and
Araki
,
M.
, 1993, “
Stability of the Limiting Zeros of Sampled-Data Systems With Zero- and First-Order Holds
,”
Int. J. Control
0020-7179,
58
(
6
), pp.
1325
1346
.
10.
Åström
,
K. J.
,
Hagander
,
P.
, and
Sternby
,
J.
, 1984, “
Zeros of Sampled Systems
,”
Automatica
0005-1098,
20
, pp.
31
38
.
11.
Fu
,
Y.
, and
Dumont
,
G. A.
, 1989, “
Choice of Sampling to Ensure Minimum-Phase Behavior
,”
IEEE Trans. Autom. Control
0018-9286,
34
(
5
), pp.
560
563
.
12.
Åström
,
K. J.
, and
Wittenmark
,
B.
, 1997,
Computer-Controlled Systems: Theory and Design
,
Prentice-Hall International
, London.
13.
Mustafa
,
M. M.
, 2002, “
Trajectory-Adaptive Digital Tracking Controllers for Nonminimum Phase Systems Without Factorisation of Zeros
,”
IEE Proc.: Control Theory Appl.
1350-2379,
149
(
2
), pp.
157
162
.
14.
Lin
,
J. L.
, and
Juang
,
J. N.
, 1995, “
Sufficient Conditions for Minimum-Phase Second-Order Linear Systems
,”
J. Vib. Control
1077-5463,
1
, pp.
183
199
.
15.
Lin
,
J. L.
, 1999, “
On Transmission Zeros of Mass-Dashpot-Spring Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
, pp.
179
183
.
16.
Lin
,
J. L.
,
Chan
,
K. C.
,
Sheen
,
J. J.
, and
Chen
,
S. J.
, 2004, “
Interlacing Properties for Mass-Dashpot-Spring Systems With Proportional Damping
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
2
), pp.
426
430
.
17.
The MATHWORKS, Inc.
, 1998,
Control System Toolbox User’s Guide
,
The MathWorks, Inc.
, Natick, Mass.
You do not currently have access to this content.