This paper addresses methods for determining the motion of an elastically suspended rigid body in frictional contact at multiple distinct locations. The methods developed assume that: (1) The motion of the support from which the body is suspended and the elastic behavior of the suspension are known; (2) inertial forces are negligible (motion is quasi-static); and (3) the contact is characterized by Coulomb friction. The derived coupled set of spatial rigid body equations is used to determine both the unknown direction of the friction force (at each point of contact) and the unknown motion of the rigid body. The uniqueness of the set of active constraints when considering multipoint contact is also addressed. We show that, for any passive compliant system, if the coefficient of friction at each contact is upper bounded, the set of active constraints is unique. A procedure to determine both the set of active constraints and the motion of the constrained body is provided.

1.
Stewart
,
D. E.
, 2000, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
0036-1445,
42
(
1
), pp.
3
39
.
2.
Mason
,
M. T.
, and
Wang
,
Y.
, 1988, “
On the Inconsistency of Rigid-Body Frictional Planar Mechanics
,” in
Proceeding of the IEEE International Conference on Robotics and Automation
.
3.
Rajan
,
V. T.
,
Burridge
,
R.
, and
Schwartz
,
J. T.
, 1987, “
Dynamics of a Rigid Body in Frictional Contact With Rigid Wells: Motion in Two Dimensions
,” in
Proceeding of the IEEE International Conference on Robotics and Automation
.
4.
Brost
,
R. C.
, and
Mason
,
M. T.
, 1990, “
Graphical Analysis of Planar Rigid-Body Dynamics With Multiple Frictional Contacts
,” in
Robotics Research: The Fifth International Symposium
,
H.
Miura
and
S.
Arimoto
, Eds., (
MIT Press
, Cambridge, MA), pp.
293
300
.
5.
Wang
,
Y.
,
Kumar
,
V.
, and
Abel
,
J.
, 1992, “
Dynamics of Rigid Bodies Undergoing Multiple Frictional Contact
,” in
Proceeding of the IEEE International Conference on Robotics and Automation
, pp.
2764
2769
.
6.
Dupont
,
P. E.
, 1993, “
The Effect of Friction on the Forward Dynamics Problem
,”
Int. J. Robot. Res.
0278-3649,
12
(
2
) April, pp.
164
179
.
7.
Dupont
,
P. E.
, 1993, “
Existence and Uniqueness of Rigid-Body Dynamics With Coulomb Friction
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
17
(
4A
), pp.
513
525
.
8.
Mason
,
M. T.
, and
Salisbury
,
J. K.
, 1985,
Robot Hand and the Mechanics of Manipulation
,
MIT Press
, Cambridge, MA.
9.
Peshkin
,
M. A.
, and
Sanderson
,
A. C.
, 1988, “
The Motion of a Pushed, Sliding Workpiece
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
6
), pp.
569
598
.
10.
Lynch
,
K. M.
, and
Mason
,
M. T.
, 1996, “
Stable Pushing: Mechanics, Controllability, and Planning
,”
Int. J. Robot. Res.
0278-3649,
15
(
6
), pp.
533
556
.
11.
Trinkle
,
J. C.
, and
Zeng
,
D. C.
, 1995, “
Prediction of the Quasistatic Planar Motion of a Contacted Rigid Body
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
2
) April, pp.
229
246
.
12.
Pang
,
J.
,
Trinkle
,
J. C.
, and
Lo
,
G.
, 1996, “
A Complementarity Approach to a Quasistatic Multirigid-Body Contact Problem
,”
Comput. Optim. Appl.
0926-6003,
5
, pp.
139
154
.
13.
Pang
,
J.
, and
Trinkle
,
J. C.
, 1996, “
Complementarity Formulations and Existence of Solutions of Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction
,”
Math. Program.
0025-5610,
73
(
2
), pp.
199
226
.
14.
Song
,
P.
,
Kraus
,
P.
,
Kumar
,
V.
, and
Dupont
,
P.
, 2001, “
Analysis of Rigid-Body Dynamic Models for Simulation of Systems With Friction Contacts
,”
ASME J. Appl. Mech.
0021-8936,
68
(
1
) January, pp.
118
128
.
15.
Kao
,
I.
, and
Cutkosky
,
M. R.
, 1992, “
Quasistatic Manipulation With Compliance and Sliding
,”
Int. J. Robot. Res.
0278-3649,
11
(
1
) February, pp.
20
40
.
16.
Howe
,
R. D.
, and
Cutkosky
,
M. R.
, 1996, “
Practical Force-Motion Models for Sliding Manipulation
,”
Int. J. Robot. Res.
0278-3649,
15
, pp.
557
572
.
17.
Xydas
,
N.
, and
Kao
,
I.
, 1999, “
Modeling of Contact Mechanics and Friction Limit Surfaces for Soft Fingers in Robotics, With Experimental Results
,”
Int. J. Robot. Res.
0278-3649,
18
(
8
) September, pp.
941
950
.
18.
Whitney
,
D. E.
, 1982, “
Quasi-Static Assembly of Compliantly Supported Rigid Parts
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
104
(
1
), pp.
65
77
.
19.
Schimmels
,
J. M.
, and
Peshkin
,
M. A.
, 1994, “
Force-Assembly With Friction
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
4
), pp.
465
479
.
20.
Andersson
,
L.-E.
, and
Klarbring
,
A.
, 2001, “
A Review of the Theory of Static and Quasi-Static Frictional Contact Problems in Elasticity
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
2519
2539
.
21.
Duvaut
,
G.
, and
Lions
,
J. L.
, 1976,
Inequalities in Mechanics and Physics
,
Springer-Verlag
, Berlin.
22.
Cocu
,
M.
, 1984, “
Existence of Solutions of Signorini Problems With Friction
,”
Int. J. Optoelectron.
0952-5432,
22
(
5
), pp.
567
575
.
23.
Eck
,
C.
, and
Jarusek
,
J.
, 1998, “
Existence Results for the Static Contact Problem With Coulomb Friction
,”
Math. Models Meth. Appl. Sci.
0218-2025,
8
(
5
), pp.
445
468
.
24.
Klarbring
,
A.
, and
Pang
,
J.-S.
, 1998, “
Existence of Solutions to Discrete Semicoercive Frictional Contact Problems
,”
SIAM J. Optim.
1052-6234,
8
(
2
), pp.
414
442
.
25.
Huang
,
S.
, and
Schimmels
,
J. M.
, 2003, “
Spatial Compliant Motion of a Rigid Body Constrained by a Frictional Contact
,”
Int. J. Robot. Res.
0278-3649,
22
(
9
), pp.
733
756
.
26.
Huang
,
S.
, and
Schimmels
,
J. M.
, 2002, “
The Motion of a Compliantly Suspended Rigid Body Constrained by Multi-Point Frictionless Contact
,” in
Proceedings of the ASME International Congress and Exposition
.
27.
Ohwovoriole
,
M. S.
, and
Roth
,
B.
, 1981, “
An Extension of Screw Theory
,”
ASME J. Mech. Des.
0161-8458,
103
(
4
), pp.
725
735
.
28.
Golub
,
G. H.
, and
Loan
,
C. F. V.
, 1996,
Matrix Computations
,
3rd ed.
,
The John Hopkins University Press
, Baltimore, MD.
You do not currently have access to this content.