Conventional models of high velocity impact dynamics rely on approximate solutions of the governing partial differential equations for an elastic-plastic continuum, developed using weighted residual, finite difference, or other techniques prevalent in the computational mechanics literature. Hamiltonian mechanics provides an alternative approach, one which makes no reference to any PDE description of the physical system. The derived Hamilton’s equations incorporate general contact-impact effects, apply to a wide class of material constitutive relations, and allow for the simulation of highly nonlinear three-dimensional impact problems.
Issue Section:
Technical Papers
1.
McGlaun
, J. M.
, Thompson
, S. L.
, and Elrick
, M. G.
, 1990, “CTH: A Three Dimensional Shock Wave Physics Code
,” Int. J. Impact Eng.
0734-743X, 10
, pp. 351
–360
.2.
Goudreau
, G. L.
, and Hallquist
, J. O.
, 1982, “Recent Developments in Large-Scale Finite Element Hydrocode Technology
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 33
, pp. 725
–757
.3.
Lu
, Y. Y.
, Belytschko
, T.
, and Tabbara
, M.
, 1995, “Element-Free Galerkin Method for Wave Propagation and Dynamic Fracture
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 126
, pp. 131
–153
.4.
Benz
, W.
, and Asphaug
, E.
, 1995, “Simulations of Brittle Solids Using Smooth Particle Hydrodynamics
,” Comput. Phys. Commun.
0010-4655, 87
, pp. 253
–265
.5.
Stellingwerf
, R. F.
, and Wingate
, C. A.
, 1993, “Impact Modeling With Smooth Particle Hydrodynamics
,” Int. J. Impact Eng.
0734-743X, 14
, pp. 707
–718
.6.
Sulsky
, D.
, Chen
, Z.
, and Schreyer
, H. L.
, 1994, “A Particle Method for History Dependent Materials
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 188
, pp. 179
–196
.7.
Liu
, W. K.
, Hao
, S.
, Belytschko
, T.
, Li
, S.
, and Chang
, C. T.
, 2000, “Multi-Scale Methods
,” Int. J. Numer. Methods Eng.
0029-5981, 47
, pp. 1343
–1361
.8.
Johnson
, G. R.
, Petersen
, E. H.
, and Stryk
, R. A.
, 1993, “Incorporation of an SPH Option Into the EPIC Code for a Wide Range of High Velocity Impact Computations
,” Int. J. Impact Eng.
0734-743X, 14
, pp. 385
–394
.9.
Fahrenthold
, E. P.
, and Horban
, B. A.
, 1999, “A Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation
,” Int. J. Impact Eng.
0734-743X, 23
, pp. 237
–248
.10.
Fahrenthold
, E. P.
, and Koo
, J. C.
, 2000, “Hybrid Particle-Element Bond Graphs for Impact Dynamics Simulation
,” J. Dyn. Syst., Meas., Control
0022-0434, 122
, pp. 306
–313
.11.
Horban
, B. A.
, 2001, “A Hamiltonian Particle-Finite Element Method for Elastic-Plastic Impact Simulation
,” PhD dissertation, Department of Mechanical Engineering, University of Texas at Austin.12.
Fahrenthold
, E. P.
, and Horban
, B. A.
, 2001, “An Improved Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation
,” Int. J. Impact Eng.
0734-743X, 26
, pp. 169
–178
.13.
Fahrenthold
, E. P.
, and Koo
, J. C.
, 1997, “Hamiltonian Particle Hydrodynamics
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 146
, pp. 43
–52
.14.
Fahrenthold
, E. P.
, and Koo
, J. C.
, 1999, “Discrete Hamilton’s Equations for Viscous Compressible Fluid Dynamics
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 178
, pp. 1
–22
.15.
Koo
, J. C.
, and Fahrenthold
, E. P.
, 2000, “Discrete Hamilton’s Equations for Arbitrary Lagrangian Eulerian Dynamics of Viscous Compressible Flow
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 189
, pp. 875
–900
.16.
Shapiro
, P. R.
, Martel
, H.
, Villumsen
, J. V.
, and Owen
, J. M.
, 1996, “Adaptive Smooth Particle Hydrodynamics, With Application to Cosmology: Methodology
,” Astrophys. J., Suppl. Ser.
0067-0049, 103
, pp. 269
–330
.17.
Owens
, J. M.
, Villumsen
, J. V.
, Shapiro
, P. R.
, and Martel
, H.
, 1998, “Adaptive Smooth Particle Hydrodynamics: Methodology II
,” Astrophys. J., Suppl. Ser.
0067-0049, 116
, pp. 155
–209
.18.
Shabana
, A. A.
, 1991, Theory of Vibration
, Vol. 2
, Springer-Verlag
, New York.19.
Hockney
, R. W.
, and Eastwood
, J. W.
, 1981, Computer Simulation Using Particles
, McGraw-Hill Inc.
, New York.20.
Lubliner
, J.
, 1990, Plasticity Theory
, MacMillan
, New York.21.
Hallquist
, J. O.
, 1983, Theoretical Manual for DYNA3D, Lawrence Livermore National Laboratory, Livermore, California.22.
Fahrenthold
, E. P.
, and Horban
, B. A.
, 1997, “Thermodynamics of Continuum Damage and Fragmentation Models for Hypervelocity Impact
,” Int. J. Impact Eng.
0734-743X, 20
, pp. 241
–252
.23.
Swegle
, J. W.
, Hicks
, D. L.
, and Attaway
, S. W.
, 1995, “Smooth Particle Hydrodynamics Stability Analysis
,” J. Comput. Phys.
0021-9991, 116
, pp. 123
–134
.24.
Johnson
, G. R.
, and Beissel
, S. R.
, 1996, “Normalized Smoothing Functions for SPH Impact Computations
,” Int. J. Numer. Methods Eng.
0029-5981, 39
, pp. 2725
–2741
.25.
Johnson
, G. R.
, Stryk
, R. A.
, and Beissel
, S. R.
, 1996, “SPH for High Velocity Impact Computations
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 139
, pp. 347
–373
.26.
Barry
, W.
, and Saigal
, S.
, 1999, “A Three-Dimensional Element-Free Galerkin Elastic and Elastoplastic Formulation
,” Int. J. Numer. Methods Eng.
0029-5981, 46
, pp. 671
–693
.27.
Belytschko
, T.
, Krongauz
, Y.
, Organ
, D.
, Fleming
, M.
, and Krysl
, P.
, 1996, “Meshless Methods: An Overview and Recent Developments
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 139
, pp. 3
–47
.28.
Simo
, J. C.
, 1988, “A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I. Continuum Formulation
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 66
, pp. 199
–219
.29.
Simo
, J. C.
, 1988, “A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part II. Computational Aspects
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 68
, pp. 1
–31
.30.
Grady
, D. E.
, and Kipp
, M. E.
, 1989, “Fragmentation of Solids Under Dynamic Loading
,” in Structural Failure
, edited by T.
Wierzbicki
and N.
Jones
, Wiley
, New York.31.
Lubarda
, V. A.
, and Krajcinovic
, D.
, 1995, “Some Fundamental Issues in Rate Theory of Damage-Elastoplasticity
,” Int. J. Plast.
0749-6419, 7
, No. 7
, pp. 763
–797
.32.
Noh
, W. F.
, 1978, “Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux
,” J. Comput. Phys.
0021-9991, 72
, pp. 78
–120
.33.
Ginsberg
, J. H.
, 1988, Advanced Engineering Dynamics
, Harper and Row, Inc.
, Cambridge.34.
Steinberg
, D. J.
, 1996, Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-MA-106439.35.
Silling
, S. A.
, 1992, CTH Reference Manual: Johnson-Holmquist Ceramic Model, Sandia National Laboratories, SAND92-0576.36.
Lee
, M.
, and Yoo
, Y. H.
, 2003, “Assessment of a New Dynamic FE-Code: Application to the Impact of a Yawed-Rod Onto Nonstationary Oblique Plate
,” Int. J. Impact Eng.
0734-743X, 29
, pp. 425
–436
.37.
Liden
, E.
, Ottosson
, J.
, and Holmberg
, L.
, 1996, “WHA Rods Penetrating Stationary and Moving Oblique Steel Plates
,” Proceedings of the 16th International Symposium on Ballistics
, pp. 711
–719
.38.
Hertel
, E. S.
, 1992, A Comparison of the CTH Hydrodynamics Code With Experimental Data, SAND92-1879, Sandia National Laboratories.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.