Conventional models of high velocity impact dynamics rely on approximate solutions of the governing partial differential equations for an elastic-plastic continuum, developed using weighted residual, finite difference, or other techniques prevalent in the computational mechanics literature. Hamiltonian mechanics provides an alternative approach, one which makes no reference to any PDE description of the physical system. The derived Hamilton’s equations incorporate general contact-impact effects, apply to a wide class of material constitutive relations, and allow for the simulation of highly nonlinear three-dimensional impact problems.

1.
McGlaun
,
J. M.
,
Thompson
,
S. L.
, and
Elrick
,
M. G.
, 1990, “
CTH: A Three Dimensional Shock Wave Physics Code
,”
Int. J. Impact Eng.
0734-743X,
10
, pp.
351
360
.
2.
Goudreau
,
G. L.
, and
Hallquist
,
J. O.
, 1982, “
Recent Developments in Large-Scale Finite Element Hydrocode Technology
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
33
, pp.
725
757
.
3.
Lu
,
Y. Y.
,
Belytschko
,
T.
, and
Tabbara
,
M.
, 1995, “
Element-Free Galerkin Method for Wave Propagation and Dynamic Fracture
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
126
, pp.
131
153
.
4.
Benz
,
W.
, and
Asphaug
,
E.
, 1995, “
Simulations of Brittle Solids Using Smooth Particle Hydrodynamics
,”
Comput. Phys. Commun.
0010-4655,
87
, pp.
253
265
.
5.
Stellingwerf
,
R. F.
, and
Wingate
,
C. A.
, 1993, “
Impact Modeling With Smooth Particle Hydrodynamics
,”
Int. J. Impact Eng.
0734-743X,
14
, pp.
707
718
.
6.
Sulsky
,
D.
,
Chen
,
Z.
, and
Schreyer
,
H. L.
, 1994, “
A Particle Method for History Dependent Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
, pp.
179
196
.
7.
Liu
,
W. K.
,
Hao
,
S.
,
Belytschko
,
T.
,
Li
,
S.
, and
Chang
,
C. T.
, 2000, “
Multi-Scale Methods
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
, pp.
1343
1361
.
8.
Johnson
,
G. R.
,
Petersen
,
E. H.
, and
Stryk
,
R. A.
, 1993, “
Incorporation of an SPH Option Into the EPIC Code for a Wide Range of High Velocity Impact Computations
,”
Int. J. Impact Eng.
0734-743X,
14
, pp.
385
394
.
9.
Fahrenthold
,
E. P.
, and
Horban
,
B. A.
, 1999, “
A Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation
,”
Int. J. Impact Eng.
0734-743X,
23
, pp.
237
248
.
10.
Fahrenthold
,
E. P.
, and
Koo
,
J. C.
, 2000, “
Hybrid Particle-Element Bond Graphs for Impact Dynamics Simulation
,”
J. Dyn. Syst., Meas., Control
0022-0434,
122
, pp.
306
313
.
11.
Horban
,
B. A.
, 2001, “
A Hamiltonian Particle-Finite Element Method for Elastic-Plastic Impact Simulation
,” PhD dissertation, Department of Mechanical Engineering, University of Texas at Austin.
12.
Fahrenthold
,
E. P.
, and
Horban
,
B. A.
, 2001, “
An Improved Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation
,”
Int. J. Impact Eng.
0734-743X,
26
, pp.
169
178
.
13.
Fahrenthold
,
E. P.
, and
Koo
,
J. C.
, 1997, “
Hamiltonian Particle Hydrodynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
146
, pp.
43
52
.
14.
Fahrenthold
,
E. P.
, and
Koo
,
J. C.
, 1999, “
Discrete Hamilton’s Equations for Viscous Compressible Fluid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
178
, pp.
1
22
.
15.
Koo
,
J. C.
, and
Fahrenthold
,
E. P.
, 2000, “
Discrete Hamilton’s Equations for Arbitrary Lagrangian Eulerian Dynamics of Viscous Compressible Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
189
, pp.
875
900
.
16.
Shapiro
,
P. R.
,
Martel
,
H.
,
Villumsen
,
J. V.
, and
Owen
,
J. M.
, 1996, “
Adaptive Smooth Particle Hydrodynamics, With Application to Cosmology: Methodology
,”
Astrophys. J., Suppl. Ser.
0067-0049,
103
, pp.
269
330
.
17.
Owens
,
J. M.
,
Villumsen
,
J. V.
,
Shapiro
,
P. R.
, and
Martel
,
H.
, 1998, “
Adaptive Smooth Particle Hydrodynamics: Methodology II
,”
Astrophys. J., Suppl. Ser.
0067-0049,
116
, pp.
155
209
.
18.
Shabana
,
A. A.
, 1991,
Theory of Vibration
, Vol.
2
,
Springer-Verlag
, New York.
19.
Hockney
,
R. W.
, and
Eastwood
,
J. W.
, 1981,
Computer Simulation Using Particles
,
McGraw-Hill Inc.
, New York.
20.
Lubliner
,
J.
, 1990,
Plasticity Theory
,
MacMillan
, New York.
21.
Hallquist
,
J. O.
, 1983, Theoretical Manual for DYNA3D, Lawrence Livermore National Laboratory, Livermore, California.
22.
Fahrenthold
,
E. P.
, and
Horban
,
B. A.
, 1997, “
Thermodynamics of Continuum Damage and Fragmentation Models for Hypervelocity Impact
,”
Int. J. Impact Eng.
0734-743X,
20
, pp.
241
252
.
23.
Swegle
,
J. W.
,
Hicks
,
D. L.
, and
Attaway
,
S. W.
, 1995, “
Smooth Particle Hydrodynamics Stability Analysis
,”
J. Comput. Phys.
0021-9991,
116
, pp.
123
134
.
24.
Johnson
,
G. R.
, and
Beissel
,
S. R.
, 1996, “
Normalized Smoothing Functions for SPH Impact Computations
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
2725
2741
.
25.
Johnson
,
G. R.
,
Stryk
,
R. A.
, and
Beissel
,
S. R.
, 1996, “
SPH for High Velocity Impact Computations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
347
373
.
26.
Barry
,
W.
, and
Saigal
,
S.
, 1999, “
A Three-Dimensional Element-Free Galerkin Elastic and Elastoplastic Formulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
671
693
.
27.
Belytschko
,
T.
,
Krongauz
,
Y.
,
Organ
,
D.
,
Fleming
,
M.
, and
Krysl
,
P.
, 1996, “
Meshless Methods: An Overview and Recent Developments
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
3
47
.
28.
Simo
,
J. C.
, 1988, “
A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I. Continuum Formulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
66
, pp.
199
219
.
29.
Simo
,
J. C.
, 1988, “
A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part II. Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
68
, pp.
1
31
.
30.
Grady
,
D. E.
, and
Kipp
,
M. E.
, 1989, “
Fragmentation of Solids Under Dynamic Loading
,” in
Structural Failure
, edited by
T.
Wierzbicki
and
N.
Jones
,
Wiley
, New York.
31.
Lubarda
,
V. A.
, and
Krajcinovic
,
D.
, 1995, “
Some Fundamental Issues in Rate Theory of Damage-Elastoplasticity
,”
Int. J. Plast.
0749-6419,
7
, No.
7
, pp.
763
797
.
32.
Noh
,
W. F.
, 1978, “
Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux
,”
J. Comput. Phys.
0021-9991,
72
, pp.
78
120
.
33.
Ginsberg
,
J. H.
, 1988,
Advanced Engineering Dynamics
,
Harper and Row, Inc.
, Cambridge.
34.
Steinberg
,
D. J.
, 1996, Equation of State and Strength Properties of Selected Materials, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-MA-106439.
35.
Silling
,
S. A.
, 1992, CTH Reference Manual: Johnson-Holmquist Ceramic Model, Sandia National Laboratories, SAND92-0576.
36.
Lee
,
M.
, and
Yoo
,
Y. H.
, 2003, “
Assessment of a New Dynamic FE-Code: Application to the Impact of a Yawed-Rod Onto Nonstationary Oblique Plate
,”
Int. J. Impact Eng.
0734-743X,
29
, pp.
425
436
.
37.
Liden
,
E.
,
Ottosson
,
J.
, and
Holmberg
,
L.
, 1996, “
WHA Rods Penetrating Stationary and Moving Oblique Steel Plates
,”
Proceedings of the 16th International Symposium on Ballistics
, pp.
711
719
.
38.
Hertel
,
E. S.
, 1992, A Comparison of the CTH Hydrodynamics Code With Experimental Data, SAND92-1879, Sandia National Laboratories.
You do not currently have access to this content.