A method of noncollocated controller design for flexible structures, governed by the wave equation, is proposed. First an exact, infinite dimension, transfer function is derived and its properties are investigated. A key element in that part is the existence of time delays due to the wave motion. The controller design consists of two stages. The first one is an inner collocated rate loop. It is shown that there exists a controller that leads to a finite dimensional plus delay inner closed loop, which is the equivalent plant for the outer loop. In the second stage an outer noncollocated position loop is closed. It has the structure of an observer-predictor control scheme to compensate for the response delay. The resulting overall transfer function is second order, with arbitrarily assigned dynamics, plus delay.

1.
Ben-Asher
J.
,
Burns
,
J. A.
, and
Cliff
,
E. M.
, 1992, “
Time-Optimal Slewing of Flexible Spacecraft
,”
J. Guid. Control Dyn.
0731-5090,
15
, pp.
360
367
.
2.
Singh
,
T.
, and
Alli
,
H.
, 1996, “
Exact Time Optimal Control of the Wave Equation
,”
J. Guid. Control Dyn.
0731-5090,
19
, pp.
130
-
134
.
3.
Muenchhof
,
M.
, and
Singh
,
T.
, 2003, “
Jerk Limited Time Optimal Control of Flexible Structures
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
1
), pp.
139
142
.
4.
Shinar
,
J.
, and
Meirovitch
,
L.
, 1986, “
Minimum Fuel Control of Higher Order Systems
,”
J. Optim. Theory Appl.
0022-3239,
48
, pp.
469
491
5.
Meyer
,
J. L.
, and
Silverberg
,
L.
, 1996, “
Fuel Optimal Propulsive Maneuver of an Experimental Structure Exhibiting Space-Like Dynamics
,”
J. Guid. Control Dyn.
0731-5090,
19
, pp.
141
150
.
6.
Singer
,
N. C.
, and
Seering
,
W. P.
, 1990, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
76
82
.
7.
Lau
,
M. A.
, and
Pao
,
L. Y.
, 2003, “
Input Shaping and Time-Optimal Control of Flexible Structures
,”
Automatica
0005-1098,
39
(
5
), pp.
893
900
.
8.
Pao
,
L. Y.
, and
Lau
,
M. A.
, 2000, “
Robust Input Shaper Control Design for Parameter Variations in Flexible Structures
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
1
), pp.
63
70
.
9.
Kapila
,
V.
,
Trez
,
A.
, and
Yan
,
Q.
, 2000 “
Closed-Loop Input Shaping for Flexible Structures Using Time-Delay Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
, pp.
454
460
.
10.
Balas
,
M. J.
, 1978, “
Feedback Control of Flexible System
,”
IEEE Trans. Autom. Control
0018-9286,
AC-23
, pp.
673
679
.
11.
Benhabib
,
R. J.
,
Iwens
,
R. P.
, and
Jackson
,
R. L.
, 1981, “
Stability of Large Space Structure Control Systems Using Positivity Concepts
,”
J. Guid. Control
0162-3192,
4
, pp.
487
494
.
12.
Silverberg
,
L.
, 1986, “
Uniform Damping Control of Spacecraft
,”
J. Guid. Control Dyn.
0731-5090,
9
, pp.
221
227
.
13.
Singh
,
T.
, 2002, “
Minimax Design of Robust Controllers for Flexible Systems
,”
J. Guid. Control Dyn.
0731-5090,
25
(
5
), pp.
868
875
.
14.
Bernstein
,
D. S.
, and
Hyland
,
D. C.
, 1985, “
The optimal projection/maximum entropy approach to designing low-order, robust controllers for flexible structures
,”
Proc. IEEE Conf. Dec. Contr.
, Fort Lauderdale, FL, pp.
745
752
.
15.
Toker
,
O.
, and
Ozbay
,
H.
, 1995, “
H-Infinity Optimal and Suboptimal Controllers for Infinite Dimensional SISO Plants
,”
IEEE Trans. Autom. Control
0018-9286,
40
, pp.
751
755
.
16.
Safonov
,
M. G.
,
Chiang
,
R. Y.
, and
Flashner
,
H.
, 1991, “
H∞ Robust Control for a Large Space Structure
,”
J. Guid. Control
0162-3192,
14
, pp.
513
519
.
17.
Cohen
,
K.
, and
Weller
,
T.
, 1994, “
Passive Damping Augmentation of Flexible Large Space Structures
,”
J. Sound Vib.
0022-460X,
175
, pp.
333
346
.
18.
Fahroo
,
F.
, 2003, “
Optimizing the decay rate in the damped wave equation: a numerical study
,”
American Control Conference
,
Denver, CO.
19.
Bupp
,
R. T.
,
Bernstein
,
D. S,.
Chellaboina
,
V.
, and
Haddad
,
W. M.
, 2000, “
Resetting Virtual Absorbers for Control
,”
J. Vib. Control
1077-5463,
6
, pp.
61
83
.
20.
Chait
,
Y.
,
Radcliffe
,
C. J.
, and
MacCluer
,
C. R.
, 1988, “
Frequency Domain Stability Criterion for Vibration Control of a Bernoulli-Euler Beam
,”
J. Dyn. Syst., Meas., Control
0022-0434,
110
, pp.
303
307
.
21.
Spector
,
V. A.
, and
Flashner
,
H.
, 1990, “
Modeling and Design Implications of Noncollocated Control in Flexible Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-35
, pp.
186
-
193
.
22.
Yang
,
B.
, 1992, “
Noncolocated Control of a Damped String Using Time Delay
,”
J. Dyn. Syst., Meas., Control
0022-0434,
114
, pp.
736
740
.
23.
Yang
,
B.
, and
Mote
,
C. D.
, Jr.
, 1992, “
On Time Delay in Noncollocated Control of Flexible Mechanical Systems
,”
J. Dyn. Syst., Meas., Control
0022-0434,
114
, pp.
409
421
.
24.
von Flotow
,
A. H.
, 1986, “
Traveling Wave Control for Large Space Structures
,”
J. Guid. Control Dyn.
0731-5090,
9
, pp.
462
468
.
25.
Pines
,
D. J.
, and
von Flotow
,
A. H.
, 1990, “
Active Control of Bending Wave Propagation at Acoustic Frequencies
,”
J. Sound Vib.
0022-460X,
142
, pp.
391
412
.
26.
Alli
,
H.
, and
Singh
,
T.
, 2000, “
On the Feedback Control of the Wave Equation
,”
J. Sound Vib.
0022-460X,
234
, pp.
625
640
.
27.
Raskin
,
N.
, and
Halevi
,
Y.
, 1999, “
Control of flexible structures using models with dead time
,”
The 7th IEEE Mediterranean Conference on Control and Automation
, Haifa, Israel.
28.
Raskin
,
N.
, and
Halevi
,
Y.
, 2001, “
Control of flexible structures governed by the wave equation
,”
American Control Conference
, Arlington, VA.
29.
Raskin
,
N.
, and
Halevi
,
Y.
, 2001, “
Rate Feedback Control of Free-Free Uniform Flexible Rod
,”
J. Guid. Control Dyn.
0731-5090,
24
, pp
1037
-
1040
.
30.
Halevi
,
Y.
, 2002, “
On rate feedback for flexible structures governed by the wave equation
,”
42nd Israel Annual Conference on Aerospace Sciences
, Tel Aviv, Israel.
31.
Smith
,
O. J. M.
, 1957, “
Closer Control of Loops with Dead Time
,”
Chem. Eng. Prog.
0360-7275,
53
, pp.
217
219
.
32.
Furukawa
,
T.
, and
Shimemura
,
E.
, 1983, “
Predictive Control for Systems with Time Delay
,”
Int. J. Control
0020-7179,
37
, pp.
399
-
412
.
33.
Palmor
,
Z. J.
, and
Halevi
,
Y.
, 1983, “
On the Design and Properties of Multivariable Dead Time Compensators
,”
Automatica
0005-1098,
19
, pp.
225
264
.
34.
Palmor
,
Z. J,.
and
Blau
,
M.
, 1994, “
An Auto-Tuner for Smith Dead-Time Compensator
,”
Int. J. Control
0020-7179,
60
, pp.
117
135
.
35.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
Collier-Macmillan Limited
, London.
36.
Inman
,
D. J.
, 2000,
Engineering Vibration
,
Prentice Hall
, Englewood Cliffs, NJ
This content is only available via PDF.
You do not currently have access to this content.