Parallel manipulators are uncontrollable at force singularities due to the infeasibly high actuator forces required. Existing remedies include the application of actuation redundancy and motion planning for singularity avoidance. While actuation redundancy increases cost and design complexity, singularity avoidance reduces the effective workspace of a parallel manipulator. This article presents a path tracking type of approach to operate parallel manipulators when passing through force singularities. We study motion feasibility in the neighborhood of singularity and conclude that a parallel manipulator may track a path through singular poses if its velocity and acceleration are properly constrained. Techniques for path verification and tracking are presented, and an inverse dynamics algorithm that takes actuator bounds into account is examined. Simulation results for a planar parallel manipulator are given to demonstrate the details of this approach.

1.
Collins
,
C. L.
, and
Long
,
G. L.
, 1995, “
The Singularity Analysis of an In-parallel Hand Controller for Force-Reflected Teleoperation
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
5
), pp.
661
669
.
2.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
, 1998, “
Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues
,”
Mech. Mach. Theory
0094-114X,
33
(
6
), pp.
727
742
.
3.
Bhattacharya
,
S.
,
Hatwal
,
H.
, and
Ghosh
,
A.
, 1998, “
Comparison of an Exact and an Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
965
974
.
4.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
, 1998, “
Singularity-Free Path Planning for the Stewart Platform Manipulator
,”
Mech. Mach. Theory
0094-114X,
33
(
6
), pp.
711
725
.
5.
Perng
,
M.-H.
, and
Hsiao
,
L.
, 1999, “
Inverse Kinematic Solutions for a Fully Parallel Robot With Singularity Robustness
,”
Int. J. Robot. Res.
0278-3649,
18
(
6
), pp.
575
583
.
6.
Collins
,
C. L.
, and
MaCarthy
,
J. M.
, 1998, “
The Quartic Singularity Surfaces of Planar Platforms in the Clifford Albrebra of the Projective Plane
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
931
944
.
7.
Gosselin
,
C.
, 1990, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
377
382
.
8.
Choudhury
,
P.
, and
Ghosal
,
A.
, 2000, “
Singularity and Controllability Analysis of Parallel Manipulators and Closed-loop Mechanisms
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
1455
1479
.
9.
Nenchev
,
D. N.
,
Bhattacharya
,
S.
, and
Uchiyama
,
M.
, 1997, “
Dynamic Analysis of Parallel Manipulators Under the Singularity-Consistent Parametrization
,”
Robotica
0263-5747,
15
, pp.
375
384
.
10.
Nenchev
,
D. N.
, and
Uchiyama
,
M.
, 1997, “
Singularity-Consistent Path Planning and Motion Control through Instantaneous Self-Motion Singularities of Parallel-Link Manipulators
,”
J. Rob. Syst.
0741-2223,
14
(
1
), pp.
27
36
.
11.
Geng
,
Z.
,
Haynes
,
L.
,
Lee
,
J.
, and
Carroll
,
R.
, 1992, “
On the Dynamic Model and Kinematic Analysis of a Class of Stewart Platforms
,”
Rob. Auton. Syst.
0921-8890,
9
, pp.
237
254
.
12.
Nakamura
,
Y.
, 1991,
Advanced Robotics: Redundancy and Optimization
,
Addison-Wesley
, Reading, MA.
13.
Jui
,
C.-K. K.
, 2002, “
Path Tracking of Parallel Manipulators in the Presence of Singularities
,” Master’s Thesis, University of Calgary.
14.
Sun
,
Q.
, 2002, “
Control of Flexible-Link Multiple Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
67
75
.
15.
Kieffer
,
J.
, 1992, “
Manipulator Inverse Kinematics for Untimed End-Effector Trajectories With Ordinary Singularities
,”
Int. J. Robot. Res.
0278-3649,
11
(
3
), pp.
225
237
.
16.
Kieffer
,
J.
, 1994, “
Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
1
), pp.
1
10
.
17.
Lloyd
,
J. E.
, and
Hayward
,
V.
, 1998, “
Generating Robust Trajectories in the Presence of Ordinary and Linear-Self-Motion Singularities
,” in
Proceedings of the 1998 IEEE International Conference on Robotics and Automation
,
Leuven
, Belgium, pp.
3228
3234
.
18.
Dahl
,
O.
, and
Nielsen
,
L.
, 1990, “
Torque-Limited Path Following by On-Line Trajectory Time Scaling
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
5
), pp.
554
561
.
19.
Bobrow
,
J.
,
Dubowsky
,
S.
, and
Gibson
,
J.
, 1985, “
Time-Optimal Control of Robotic Manipulators Along Specified Paths
,”
Int. J. Robot. Res.
0278-3649,
4
(
3
), pp.
3
17
.
20.
Pfeiffer
,
F.
, and
Johanni
,
R.
, 1987, “
A Concept for Manipulator Trajectory Planning
,”
IEEE J. Rob. Autom.
0882-4967,
3
(
2
), pp.
115
123
.
21.
Shiller
,
Z.
, and
Lu
,
H.-H.
, 1992, “
Computation of Path Constrained Time Optimal Motions With Dynamic Singularities
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
104
, pp.
33
40
.
22.
Shin
,
K.
, and
McKay
,
N.
, 1985, “
Minimum-Time Control of Robotic Manipulators With Geometric Path Constraints
,”
IEEE Trans. Autom. Control
0018-9286,
AC-30
(
6
), pp.
531
541
.
23.
Slotine
,
J.-J.
, and
Yang
,
H.
, 1989, “
Improving the Efficiency of Time-Optimal Path-Following Algorithms
,”
IEEE Trans. Rob. Autom.
1042-296X,
5
(
1
), pp.
118
124
.
24.
Arai
,
H.
,
Tannie
,
K.
, and
Tachi
,
S.
, 1994, “
Path Tracking Control of a Manipulator Considering Torque Saturation
,”
IEEE Trans. Ind. Electron.
0278-0046,
IE-40
(
1
), pp.
25
31
.
You do not currently have access to this content.