During the past 20years, tremendous advancements have been made in the fields of minimally invasive surgery (MIS) and minimally invasive, robotically assisted (MIRA) cardiac surgery. Benefits from MIS include reduced pain and trauma, reduced risks of post-operative complications, shorter recovery times, and more aesthetically pleasing results. MIRA approaches have extended the capabilities of MIS by introducing three-dimensional vision, eliminating hand tremors, and enabling the precise articulation of smaller instruments. These advancements come with their own drawbacks, however. Robotic systems used in MIRA cardiac procedures are large, costly, and do not offer the miniaturized articulation necessary to facilitate tremendous advancements in MIS. This paper demonstrates that miniature actuation can overcome some of the limitations of current robotic systems by providing accurate, repeatable control of a small end effector. A 10× model of a two link surgical manipulator is developed, using antagonistic shape memory alloy wires as actuators, to simulate motions of a surgical end-effector. Artificial neural networks are used in conjunction with real-time visual feedback to “learn” the inverse system dynamics and control the manipulator endpoint trajectory. Experimental results are presented for indirect, on-line learning and control. Manipulator tip trajectories are shown to be accurate and repeatable to within 0.5mm. These results confirm that SMAs can be effective actuators for miniature surgical robotic systems, and that intelligent control can be used to accurately control the trajectory of these systems.

1.
American Heart Association
, 2001, “
2002 Heart and Stroke Statistical Update
,”
American Heart Association
, Dallas, Texas.
2.
American Heart Association
, 2002, “
Open Heart Surgery Statistics
,” http://216.185.112.5/presenter.jhtml?identifier=4674http://216.185.112.5/presenter.jhtml?identifier=4674
4.
Borst
,
C.
, 2000, “
Operating on a Beating Heart
,”
Sci. Am.
0036-8733,
283
(
4
), pp.
2
7
.
5.
Bailey
,
R. W.
, and
Flowers
,
J. L.
, eds., 1995,
Complications of Laparoscopic Surgery
,
Quality Medical Publishing Inc.
, St. Louis, MO.
6.
Felger
,
J. E.
,
Nifong
,
L. W.
, and
Chitwood
, Jr.,
W. R.
, 2001, “
The Evolution and Early Experience With Robot-assisted Mitral Valve Surgery
,”
Curr. Surg.
0149-7944,
58
(
6
), pp.
570
575
.
7.
Nifong
,
L.
, Wiley (unpublished).
8.
Fakuda
,
T.
,
Guo
,
S.
,
Kosuge
,
K.
,
Arai
,
F.
,
Negoro
,
M.
, and
Nakabayashi
,
K.
, 1994, “
Micro Active Catheter System with Multi Degrees of Freedom
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, San Diego, CA, IEEE Comput. Soc. Press, Los Alamitos, CA, pp.
2290
2295
.
9.
Guo
,
S.
,
Fukuda
,
T.
,
Kosuge
,
K.
,
Arai
,
F.
,
Oguro
,
K.
, and
Negoro
,
M.
, 1996, “
Micro Active Guide Wire Catheter System-Characteristic Evaluation, Electrical Model and Operability Evaluation of Micro Active Catheter
,”
Proceedings of the 1996 IEEE International Conference on Robotics and Automation
, Minneapolis, MN, IEEE Robotics & Autom. Soc., New York, NY, pp.
2226
2231
.
10.
Park
,
K. T.
, and
Esashi
,
M.
, 1999, “
A Multilink Active Catheter with Polyimide-Based Integrated CMOS Interface Circuits
,”
J. Microelectromech. Syst.
1057-7157,
8
(
4
), pp.
349
357
.
11.
Dario
,
P.
,
Carozza
,
M. C.
,
Lencioni
,
L.
,
Magnani
,
B.
, and
D’Attanasio
,
S.
, 1997, “
A Micro Robotic System for Colonscopy
,”
Proceedings of the 1997 IEEE International Conference on Robotics and Automation
, Albequerque, NM, IEEE, Piscataway, NJ, pp.
1567
1572
.
12.
Reynaerts
,
D.
, and
Van Brussel
,
H.
, 1998, “
Design of Shape Memory Actuators
,”
Mechatronics
0957-4158,
8
, pp.
635
656
.
13.
Reynaerts
,
D.
,
Peirs
,
J.
, and
Van Brussel
,
H.
, 1999, “
Shape Memory Micro-Actuation for Gastro-Intestinal Intervention System
,”
Sens. Actuators, A
0924-4247, Phys.,
77
, pp.
157
166
.
14.
Slatkin
,
A. B.
,
Burdick
,
J.
, and
Grundfest
,
W.
, 1995, “
The Development of a Robotic Endoscope
,”
Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robotic and Systems
, Pittsburgh, PA, IEEE Comput. Soc. Press, Los Alamitos, CA, pp.
162
171
.
15.
Piers
,
J.
,
Reynaerts
,
D.
, and
Van Brussel
,
H.
, 1998, “
Design of a Shape Memory Actuated Endoscopic Tip
,”
Sens. Actuators, A
0924-4247, Phys.,
70
, pp.
135
140
.
16.
Cao
,
L.
,
Mantell
,
S.
, and
Polla
,
D.
, 2001, “
Design and Simulation of an Implantable Medical Drug Delivery System Using Microelectromechanical Systems Technology
,”
Sens. Actuators, A
0924-4247,
94
, pp.
117
125
.
17.
Gilbertson
,
R. G.
, 1994,
Muscle Wires Project Book
,
3rd ed.
,
Mondo-tronics
, San Anselmo, CA.
18.
Ishihara
,
H.
,
Arai
,
F.
, and
Fukuda
,
T.
, 1996, “
Micro Mechatronics and Micro Actuators
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
1
(
1
), pp.
68
79
.
19.
Otsuka
,
K.
, and
Wayman
,
C. M.
, 1998,
Shape Memory Materials
,
Cambridge University Press
, Cambridge, UK.
20.
Craig
,
J. J.
, 1989,
Introduction to Robotics, Mechanics and Control
,
2nd ed.
,
Addison-Wesley
, Reading, MA.
21.
Tendick
,
F.
,
Bhoyrul
,
S.
, and
Way
,
L. W.
, 1997, “
Comparison of Laparoscopic Imaging Systems and Conditions Using a Knot-Tying Task
,”
Comput. Aided Surg.
1092-9088,
2
, pp.
24
33
.
22.
Kohl
,
M.
,
Krevet
,
B.
, and
Just
,
E.
, 2002, “
SMA Microgripper System
,”
Sens. Actuators, A
0924-4247,
3197
, pp.
1
7
.
23.
Ikuta
,
K.
, 1990, “
Microminiature Shape Memory Alloy Actuator
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Cincinnati, OH, IEEE Comput. Soc. Press, Los Alamitos, CA, pp.
2156
2161
.
24.
Gorbet
,
R. B.
, and
Wang
,
D. W. L.
, 1995, “
General Stability Criteria for a Shape Memory Alloy Position Control System
,”
Proceedings of the IEEE International Conference on Robotic and Automation
, Nagoya, Japan, IEEE, Piscataway, NJ, pp.
2313
2319
.
25.
Choi
,
S. B.
,
Han
,
Y. M.
,
Kim
,
J. H.
, and
Cheong
,
C. C.
, 2001, “
Force Tracking Control of a Flexible Gripper Featuring Shape Memory Alloy Actuators
,”
Mechatronics
0957-4158,
11
, pp.
677
690
.
26.
Song
,
G.
,
Chaudhry
,
V.
, and
Batur
,
C.
, 2003, “
A Neutral Network Inverse Model for a Shape Memory Alloy Wire Actuator
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
, pp.
371
377
.
27.
Zsiros
,
P.
,
Baranyi
,
P.
,
Kovari
,
L.
, and
Korondi
,
P.
, 2001, “
Application of Generalised Neural Networks for a Dextrous Hand
,”
Proceedings of the 9th IFAC Symposium on Artificial Intelligence in Real-Time Control (AIRTC-2000)
, Elsevier Science, Kidlington, UK, pp.
153
158
.
28.
Lei
,
K.
, and
Yam
,
Y.
, 2000, “
Modeling and Experimentation of a Positioning System of SMA Wires
,”
Proc. SPIE
0277-786X,
3986
, pp.
208
219
.
29.
Mihalcz
,
I.
,
Baranyi
,
P.
,
Balogh
,
Z.
,
Korondi
,
P.
,
Valenta
,
L.
, and
Halmai
,
A.
, 1998, “
Controlling a Shape Memory Alloy Driven Robot Gripper by Fuzzy Logic
,”
Proceedings of the 6th UK Mechatronics Forum International Conference
, Elsevier Science, Kidlington, UK, pp.
79
84
.
30.
Sarris
,
J. N.
, and
Aspragathos
,
N. A.
, 1995, “
Development of a Simple Anthropomorphic Robot Hand Using Shape Memory Alloys
,”
Proceedings of the IEE Colloquium on Innovative Actuators for Mechatronic Systems
, IEE, London, UK,
16
, pp.
1
3
.
31.
Yam
,
Y.
,
Lei
,
K.
, and
Baranyi
,
P.
, 2001, “
Control of a SMA Actuated Artificial Face Via Neuro-Fuzzy Techniques
,”
Proceedings of the 10th IEEE International Conference on Fuzzy Systems
, Melbourne, Vic., Australia, IEEE, Piscataway, NJ,
2
, pp.
1315
1318
.
32.
Nagaya
,
K.
, and
Ryu
,
H.
, 1996, “
Deflection Shape Control of a Flexible Beam by Using Shape Memory Alloy Wires Under the Genetic Algorithm Control
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
7
(
3
), pp.
336
341
.
33.
Haykin
,
S.
, 1998,
Neural Networks: A Comprehensive Foundation
, 2nd ed.,
Prentice Hall
, Upper Saddle River, NJ.
34.
Hamilton/Columbus
,
A.
, 2001, “
Forceps! Scalpel! Robot!
,”
Time
, New York, NY, June 4, pp.
64
66
.
35.
Intuitive Surgical Website, Intuitive Surgical Inc.
, 2002, http://www.intusurg.comhttp://www.intusurg.com
36.
Kumagai
,
A.
,
Hozian
,
P.
, and
Kirkland
,
M.
, 2000, “
Neuro-Fuzzy Model Based Feedback Controller for Shape Memory Alloy Actuators
,”
Proc. SPIE
0277-786X,
3984
, pp.
291
299
.
37.
Nondestructive Evaluation and Advanced Actuators (NDEAA) Technologies Lab
, 2004, “
Comparison of EAPs with Other Actuator Technologies
,” Jet Propulsion Laboratory, California Institute of Technology, http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/actuators-comp.pdfhttp://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/actuators-comp.pdf
You do not currently have access to this content.