We focus on the development of modular and recursive formulations for the inverse dynamics of parallel architecture manipulators in this paper. The modular formulation of mathematical models is attractive especially when existing sub-models may be assembled to create different topologies, e.g., cooperative robotic systems. Recursive algorithms are desirable from the viewpoint of simplicity and uniformity of computation. However, the prominent features of parallel architecture manipulators-the multiple closed kinematic loops, varying locations of actuation together with mixtures of active and passive joints-have traditionally hindered the formulation of modular and recursive algorithms. In this paper, the concept of the decoupled natural orthogonal complement (DeNOC) is combined with the spatial parallelism of the robots of interest to develop an inverse dynamics algorithm which is both recursive and modular. The various formulation stages in this process are highlighted using the illustrative example of a 3R Planar Parallel Manipulator.

1.
Ascher
,
U.
, and
Petzold
,
L.
, 1998,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
SIAM
, Philadelphia.
2.
García
de Jalón J.
,
, and
Bayo
,
E.
, 1994,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer-Verlag
, New York.
3.
Haug
,
E.
, 1989,
Computer Aided Kinematics and Dynamics of Mechanical Systems
,
Allyn and Bacon
, Boston.
4.
Schiehlen
,
W.
, 1990,
Multibody Systems Handbook
,
Springer-Verlag
, Berlin.
5.
Shabana
,
A. A.
, 2001,
Computational Dynamics
,
Wiley
, New York.
6.
Featherstone
,
R.
, 1987,
Robot Dynamics Algorithms
,
Kluwer Academic Publishers
, Boston.
7.
Kecskemethy
,
A.
,
Krupp
,
T.
, and
Hiller
,
M.
, 1997, “
Symbolic Processing of Multi-Loop Mechanism Dynamics Using Closed Form Kinematic Solutions
,”
Multibody Syst. Dyn.
1384-5640,
1
(
1
), pp.
23
45
.
8.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
9.
Wang
,
J.
,
Gosselin
,
C. M.
, and
Cheng
,
L.
, 2002, “
Modelling and Simulation of Closed-Loop Robotic Systems Using the Virtual Spring Approach
,”
Multibody Syst. Dyn.
1384-5640,
7
(
2
), pp.
145
-
170
.
10.
Stepanenko
,
Y.
, and
Vukobratovic
,
M.
, 1976, “
Dynamics of Articulated Open-Chain Active Mechanism
,”
Math. Biosci.
0025-5564,
28
, pp.
137
170
.
11.
Orin
,
D.
,
McGhee
,
R.
,
Vukobratovic
,
M.
, and
Hartoch
,
G.
, 1979, “
Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods
,”
Math. Biosci.
0025-5564,
43
, pp.
107
130
.
12.
Luh
,
J.
,
Walker
,
M.
, and
Paul
,
R.
, 1980, “
On-Line Computational Schemes for Mechanical Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
102
(
2
), pp.
69
76
.
13.
Balafoutis
,
C.
,
Patel
,
R.
, and
Cloutier
,
B.
, 1988, “
Efficient Modelling and Computation of Manipulator Dynamics Using Orthogonal Cartesian Tensors
,”
IEEE J. Rob. Autom.
0882-4967
4
, pp.
665
676
.
14.
He
,
X.
, and
Goldenberg
,
A. A.
, 1990, “
An Algorithm for Efficient Computation of Dynamics of Robotic Manipulators
,”
J. Rob. Syst.
0741-2223,
7
(
5
), pp.
689
702
.
15.
Angeles
,
J.
, and
Lee
,
S.
, 1988, “
The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
243
244
.
16.
Saha
,
S. K.
, 1999, “
Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
986
996
.
17.
Saha
,
S. K.
, and
Schiehlen
,
W. O.
, 2001, “
Recursive Kinematics and Dynamics for Parallel Structured Closed-Loop Multibody Systems
,”
Mech. Struct. Mach.
0890-5452,
29
(
2
), pp.
143
175
.
18.
Angeles
,
J.
, 2002,
Fundamentals of Robotic Mechanical Systems
,
Springer-Verlag
, New York.
19.
Saha
,
S. K.
, 1997, “
A Decomposition of the Manipulator Inertia Matrix
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
(
2
), pp.
301
304
.
20.
Merlet
,
J.-P.
, 2000,
Parallel Robots
,
Kluwer Academic Publishers
, Dordrecht.
21.
Yiu
,
Y. K.
,
Cheng
,
H.
,
Xiong
,
Z. H.
,
Liu
,
G. F.
, and
Li
,
Z. X.
, 2001, “
On the Dynamics of Parallel Manipulator
,”
Proc. 2001 ICRA, IEEE International Conference on Robotics and Automation
,
4
, pp.
3766
3771
.
22.
Ma
,
O.
, and
Angeles
,
J.
, 1989, “
Direct Kinematics and Dynamics of a Planar 3-DOf Parallel Manipulator
,” Advances in Design Automation,
Proc. of 1989 ASME Design and Automation Conference
,
3
, pp.
313
320
.
23.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
24.
Geike
,
T.
, and
McPhee
,
J.
, 2003, “
Inverse Dynamic Analysis of Parallel Manipulators with Full Mobility
,”
Mech. Mach. Theory
0094-114X,
38
(
6
), pp.
549
562
.
This content is only available via PDF.
You do not currently have access to this content.