In this study, a new hybrid-neural-network-based friction component model is developed for powertrain (PT) dynamic analysis and controller design. This new model, with significantly improved input-output scalability over conventional neural network configuration, has the capability to serve as a forward as well as an inverse system model. The structural information of the available physical and empirical correlations is utilized to construct a parallel-modulated neural network (PMNN) architecture consisting of small parallel sub-networks reflecting specific mechanisms of the friction component engagement process. The PMNN friction component model isolates the contribution of engagement pressure on engagement torque while identifying the nonlinear characteristics of the pressure-torque correlation. Furthermore, it provides a simple torque formula that is scalable with respect to engagement pressure. The network is successfully trained, tested and analyzed, first using analytical data at the component level and then using experimental data measured in a transmission system. The PMNN friction component model, together with a comprehensive powertrain model, is implemented to simulate the shifting process of an automatic transmission (AT) system under various operating conditions. Simulation results demonstrate that the PMNN model can be effectively applied as a part of powertrain system model to accurately predict transmission shift dynamics. A pressure-profiling scheme using a quadratic polynomial pressure-torque relationship of the PMNN model is developed for transmission shift controller design. The results illustrate that the proposed pressure profiling technique can be applied to a wide range of operating conditions. This study demonstrates the potential of the PMNN architecture as a new dynamic system-modeling concept: It not only outperforms the conventional network modeling techniques in accuracy and numerical efficiency, but also provides a new tool for transmission controller design to improve shift quality.

1.
Wu
,
H.
, 1978, “
A review of porous squeeze films
,”
Wear
0043-1648,
47
(
2
), pp.
371
385
.
2.
Ting
,
L. L.
, 1975, “
Engagement Behavior of Lubricated Porous Annular Disks
,”
Wear
0043-1648,
34
(
2
), pp.
159
182
.
3.
Berger
,
E. J.
,
Sadeghi
,
F.
, and
Krousgrill
,
C. M.
, 1997, “
Analytical and Numerical Modeling of Engagement of Rough, Permeable, Grooved Wet Clutches
,”
ASME J. Tribol.
0742-4787,
119
(
1
), pp.
143
148
.
4.
Fanella
,
R.
, 1994, “
Design of Friction Clutches
,”
Design Practices-Passenger Car Automatic Transmissions
, 3rd ed., (
Soc. Automotive Eng.
, New York).
5.
Husselbee
,
W. L.
, 1986,
Automatic Transmission Fundamentals and Service
,
Prentice Hall
, New Jersey.
6.
Fanella
,
R.
, 1994, “
Design of Bands
,”
Design Practices-Passenger Car Automatic Transmissions
, 3rd ed. (
Soc. Automotive Eng.
, New York).
7.
Kato
,
Y.
, and
Shibayama
,
T.
, 1994, “
Mechanisms of Automatic Transmissions and Their Requirements for Wet Clutches and Wet Brakes
,”
Jpn. J. Tribol.
1045-7828,
39
(
12
), pp.
1427
1437
.
8.
Wu
,
H.
, 1970, “
Squeeze Film Behavior for Porous Annular Disks
,”
ASME J. Lubr. Technol.
0022-2305,
92
, pp.
593
596
.
9.
Wu
,
H.
, 1971, “
The Squeeze Film between Rotating Porous Annular Plates
,”
Wear
0043-1648,
18
(
6
), pp.
461
470
.
10.
Wu
,
H.
, 1973, “
An Analysis of the Engagement of Wet-clutch Plates
,”
Wear
0043-1648,
24
(
1
), pp.
23
33
.
11.
Patir
,
N.
, and
Cheng
,
H. S.
, 1978, “
An Average Flow Model for Determining Effects of Three-dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
0022-2305,
100
(
1
), pp.
12
17
.
12.
Natsumeda
,
S.
, and
Miyoshi
,
T.
, 1994, “
Numerical Simulation of Engagement of Paper Based Wet Clutch Facing
,”
ASME J. Tribol.
0742-4787,
116
, No.
2
, pp.
232
237
.
13.
Jacobson
,
B.
, 1992, “
Engagement of oil immersed multi-disc clutches
,”
ASME International Power Transmission and Gearing Conference
, DE-43-2, pp.
567
574
.
14.
Yang
,
Y.
,
Lam
,
R. C.
,
Chen
,
Y. F.
, and
Yabe
,
H.
, 1995, “
Modeling of Heat Transfer and Fluid Hydrodynamics for a Multidisc Wet Clutch
,” SAE Special Publication-Paper 950898.
15.
Fujii
,
Y.
,
Tobler
,
W. E.
, and
Snyder
,
T. D.
, 2001, “
Prediction of Wet Band Brake Dynamic Engagement Behavior Part 1: Mathematical Model Development
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
215
(
D4
), pp.
479
492
.
16.
Fujii
,
Y.
,
Tobler
,
W. E.
, and
Snyder
,
T. D.
, 2001, “
Prediction of Wet Band Brake Dynamic Engagement Behavior Part 2: Experimental Model Validation
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
215
(
D5
), pp.
603
611
.
17.
Fujii
,
Y.
,
Tobler
,
W.
,
Pietron
,
G.
,
Cao
,
M.
, and
Wang
,
K. W.
, 2003, “
Review of Wet Friction Component Models for Automatic Transmission Shift Analysis
,” SAE paper No.2003-01-1665.
18.
Cybenko
,
G.
, 1989, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals, Syst.
0932-4194,
2
(
4
), pp.
303
314
.
19.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
, 1989, “
Multilayer Feedforward Networks are Universal Approximators
,”
Neural Networks
0893-6080,
2
(
5
), pp.
359
366
.
20.
Sato
,
M.
, and
Murakami
,
Y.
, 1991, “
Learning Nonlinear Dynamics by Recurrent Neural Networks
,”
Some Problems on the Theory of Dynamical Systems in Applied Sciences
,
World Scientific Publishing
, pp.
49
64
.
21.
Narendra
,
K. S.
, and
Parthasarathy
,
K.
, 1990, “
Identification and Control of Dynamical Systems Using Neural Networks
,”
IEEE Trans. Neural Netw.
1045-9227,
1
(
1
), pp.
4
27
.
22.
Parlos
,
A. G.
,
Atiya
,
A. F.
,
Chong
,
K. T.
, and
Tsai
,
W. K.
, 1992, “
Nonlinear Identification of Process Dynamics Using Neural Networks
,”
Nucl. Technol.
0029-5450,
97
(
1
), pp.
79
96
.
23.
Cao
,
M.
,
Wang
,
K. W.
,
DeVries
,
L.
,
Fujii
,
Y.
,
Tobler
,
W. E.
,
Pietron
,
G. M.
,
Tibbles
,
T.
, and
McCallum
,
J.
, 2004, “
Steady State Hydraulic Valve Fluid Field Estimator Based on Non-dimensional Artificial Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
4
(
3
), pp.
257
270
.
24.
Pao
,
Y. H.
, 1989,
Adaptive Pattern Recognition and Neural Network
,
Addison-Wesley
, Reading, MA.
25.
Qi
,
Haiyu
,
Zhou
,
Xing-Gui
,
Liu
,
Liang-Hong
,
Yuan
, and
Wei-Kang
, 1999, “
A Hybrid Neural Network-first Principles Model for Fixed-bed Reactor
,”
Chem. Eng. Sci.
0009-2509,
54
(
13–14
), pp.
2521
2526
.
26.
Parvataneni
,
V.
, 1998, “
A First Principle-based Hybrid Neural Network Clutch Dynamics Model
,” M.S. Thesis in Mechanical Engineering, the Pennsylvania State University.
27.
Parvateneni
,
V.
,
Cao
,
M.
,
Wang
,
K. W.
,
Fujii
,
Y.
, and
Tobler
,
W. E.
, 1999, “
Hybrid Neural Network for Modeling Automotive Clutches
,”
Proc. ASME Dynamic Systems and Control Divison
, DSC-67, pp.
255
263
.
28.
Cao
,
M.
,
Wang
,
K. W.
,
Fujii
,
Y.
, and
Tobler
,
W. E.
, 2004, “
A Hybrid Neural Network Approach for the Development of Friction Component Dynamic Model
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
1
), pp.
144
153
.
29.
Cao
,
M.
,
Wang
,
K. W.
,
Fujii
,
Y.
, and
Tobler
,
W. E.
, 2004, “
Advanced Hybrid Neural Network (AHNN) Automotive Friction Component Model for Powertrain System Dynamic Analysis, Part 1: Model Development
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
218
, pp.
831
843
.
30.
Cao
,
M.
,
Wang
,
K. W.
,
Fujii
,
Y.
, and
Tobler
,
W. E.
, 2004, “
Advanced Hybrid Neural Network (AHNN) Automotive Friction Component Model for Powertrain System Dynamic Analysis, Part 2: System Simulation
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
218
, pp.
845
857
.
31.
Psaltis
,
D.
,
Sideris
,
A.
, and
Yamamura
,
A. A.
, 1988, “
A Multi-layered Neural Network Controller
,”
IEEE Control Syst. Mag.
0272-1708,
8
(
1
), pp.
17
21
.
32.
Chen
,
Lingji
, and
Narendra
,
K. S.
, 2003, “
Intelligent Control Using Multiple Neural Networks
,”
Int. J. Adapt. Control Signal Process.
0890-6327,
17
(
6
), pp.
417
430
.
33.
Levin
,
A. U.
, and
Narendra
,
K. S.
, 1993, “
Control of Nonlinear Dynamical Systems Using Neural Networks: Controllability and Stabilization
,”
IEEE Trans. Neural Netw.
1045-9227,
4
(
2
), pp.
192
206
.
34.
Jordan
,
M. I.
, and
Rumelhart
,
D. E.
, 1991, “
Forward Models: Supervised Learning with a Distal Teacher
,”
Occasional Paper #40
, Center for Cognitive Science, MIT, 49 pages.
35.
Cao
,
M.
, 2001, “
Grey Box Neural Network and Its Application to System Modeling
,” M.S. thesis in Electrical Engineering, The Pennsylvania State University.
36.
Nahas
,
E. P.
,
Henson
,
M. A.
, and
Seboro
,
D. E.
, 1992, “
Nonlinear Internal Model Control Strategy for Neural Network Models
,”
Comput. Chem. Eng.
0098-1354,
16
(
2
), pp.
1039
1057
.
37.
Hunt
,
K. J.
, and
Sbarbaro
,
D.
, 1991, “
Neural Networks for Nonlinear Internal Model Control
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
138
(
5
), pp.
431
438
.
38.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1986,
Numerical Recipes: The Art of Scientific Computing
,
Cambridge University Press
, Cambridge, England.
39.
Fujii
,
Y.
,
Tobler
,
W. E.
,
Clausing
,
E. M.
,
Megli
,
T. W.
, and
Haghgooie
,
M.
, 2002, “
Application of Dynamic Band Brake Model for Enhanced Drivetrain Simulation
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
216
(
D11
), pp.
873
881
.
40.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of nominally flat surfaces
,”
Proc. R. Soc. London, Ser. A
1364-5021,
A295
, pp.
300
319
.
You do not currently have access to this content.