In this paper we extend an existing crank angle resolved dynamic nonlinear model of a six-cylinder 12 l turbocharged (TC) Diesel engine with exhaust valve closing (EVC) variability. Early EVC achieves a high level of internal exhaust gas recirculation (iEGR) or charge dilution in Diesel engines, and thus reduces generated oxides of nitrogen (NOx). This model is validated in steady-state conventional (fixed EVC) engine operating points. It is expected to capture the transient interactions between EVC actuation, the turbocharger dynamics, and the cylinder-to-cylinder breathing characteristics, although this has not been explicitly validated due to lack of hardware implementation. A nominal low order linear multi-input multi-output model is then identified using cycle-sampled or cycle-averaged data from the higher order nonlinear simulation model. Various low-order controllers that vary EVC to maximize the steady-state iEGR under air-to-fuel ratio (AFR) constraints during transient fueling demands are suggested based on different sensor sets. The difficulty in the control tuning arises from the fact that the EVC affects both the AFR and engine torque requiring coordination of fueling and EVC. Simulation results are shown on the full order model.

1.
Guzzella
,
L.
, and
Amstutz
,
A.
, 1998, “
Control of Diesel Engines
,”
IEEE Control Syst. Mag.
0272-1708,
18
(
2
), pp.
53
71
.
2.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
3.
Najt
,
P.
, and
Foster
,
D.
, 1983, “
Compression-Ignited Homogeneous Charge Combustion
,” SAE paper 830264.
4.
Thring
,
R. H.
, 1989, “
Homogeneous-Charge Compression-Ignition (HCCI) Engines
,” SAE paper 892068.
5.
Stefanopoulou
,
A.
,
Kolmanovsky
,
I. V.
, and
Freudenberg
,
J. S.
, 2000, “
Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
(
4
), pp.
733
745
.
6.
Edwards
,
S. P.
,
Frankle
,
G. R.
,
Wirbeleit
,
F.
, and
Raab
,
A.
, 1998, “
The Potential of a Combined Miller Cycle and Internal EGR Engine for Future Heavy Duty Truck Applications
,” SAE paper 980180.
7.
Dekker
,
H.
, and
Sturm
,
W.
, 1996, “
Simulation and Control of a HD Diesel Engine Equipped with new EGR Technology
,” SAE paper 960871.
8.
Nelles
,
O.
,
Fink
,
A.
, and
Isermann
,
R.
, 2001, “
Local Linear Model Trees (LILIMOT) Toolbox for Nonlinear System Identification
,”
Proceedings 12th IFAC Symposium on System Identification
, Vol.
3
, pp.
845
50
.
9.
Kao
,
M.
, and
Moskwa
,
J. J.
, 1995, “
Turbocharged Diesel Engine Modeling for Nonlinear Engine Control and Estimation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434
117
, pp.
20
30
.
10.
Watson
,
N.
, and
Janota
,
M. S.
, 1982,
Turbocharging the Internal Combustion Engine
,
Wiley Interscience
, New York.
11.
Jankovic
,
M.
,
Frischmuth
,
F.
,
Stefanopoulou
,
A. G.
, and
Cook
,
J. A.
, 1998, “
Torque Management of Engines with Variable Cam Timing
,”
IEEE Control Syst. Mag.
0272-1708
18
, pp.
34
42
.
12.
Moklegaard
,
L.
,
Druzhinina
,
M.
, and
Stefanopoulou
,
A.
, 2001, “
Compression Braking for Longitudinal Control of Commercial Heavy Vehicles
,” PATH Report UCB-ITS-PRR-2001-11.
13.
Moklegaard
,
L.
,
Stefanopoulou
,
A. G.
, and
Schmidt
,
J.
, 2000, “
Transition from Combustion to Compression Braking
,” SAE 2000-01-1228, SAE World Congress.
14.
Druzhinina
,
M.
,
Stefanopoulou
,
A. G.
, and
Moklegaard
,
L.
, 2002, “
Adaptive Continuously Variable Compression Braking Control for Heavy-Duty Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434
124
(
3
), pp.
406
414
.
15.
Moklegaard
,
L.
,
Druzhinina
,
M.
, and
Stefanopoulou
,
A. G.
, 2001, “
Brake Valve Timing and Fuel Injection: a Unified Engine Torque Actuator for Heavy-Duty Vehicles
,”
Veh. Syst. Dyn.
0042-3114,
36
(
2-3
), pp.
179
201
.
16.
Kiencke
,
U.
, and
Nielsen
,
L.
, 2000,
Automotive Control Systems
,
Springer-Verlag
, New York.
17.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 1996,
Multivariable Feedback Control: Analysis Design
,
Wiley
, New York.
You do not currently have access to this content.