This paper formulates the active suspension control problem as disturbance attenuation problem with output and control constraints. The H performance is used to measure ride comfort such that more general road disturbances can be considered, while time-domain hard constraints are captured using the concept of reachable sets and state-space ellipsoids. Hence, conflicting requirements are specified separately and handled in a nature way. In the framework of Linear Matrix Inequality (LMI) optimization, constrained H active suspensions are designed on half-car models with and without considering actuator dynamics. Analysis and simulation results show a promising improvement on ride comfort, while keeping suspension strokes and control inputs within bounds and ensuring a firm contact of wheels to road.

1.
Hrovat
,
D.
, 1997, “
Survey of Advanced Suspension Developments and Related Optimal Control Applications
,”
Automatica
0005-1098,
33
(
10
), pp.
1781
1817
.
2.
Gordon
,
T. J.
,
Marsh
,
C.
, and
Milsted
,
M. G.
, 1991, “
A Comparison of Adaptive LQG and Nonlinear Controllers for Vehicle Suspension Systems
,”
Veh. Syst. Dyn.
0042-3114,
20
, pp.
321
340
.
3.
Hrovat
,
D.
, 1993, “
Applications of Optimal Control to Advanced Automotive Suspension Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
, pp.
328
342
.
4.
Alleyne
,
A.
,
Neuhaus
,
P. D.
, and
Hedrick
,
J. K.
, 1993, “
Application of Nonlinear Control Theory to Electronically Controlled Suspensions
,”
Veh. Syst. Dyn.
0042-3114,
22
, pp.
309
320
.
5.
Ulsoy
,
A. G.
,
Hrovat
,
D.
, and
Tseng
,
T.
, 1994, “
Stability Robustness of LQ and LQG Active Suspensions
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
123
131
.
6.
Hac
,
A.
, 1995, “
Decentralized Control of Active Vehicle Suspensions with Preview
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
117
, pp.
478
483
.
7.
Alleyne
,
A.
, and
Hedrick
,
J. K.
, 1995, “
Nonlinear Adaptive Control of Active Suspensions
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
3
(
1
), pp.
94
101
.
8.
Williams
,
D. E.
, and
Haddad
,
W. M.
, 1997, “
Active Suspension Control to Improve Vehicle Ride and Handling
,”
Veh. Syst. Dyn.
0042-3114,
28
, pp.
1
24
.
9.
Lin
,
J. -S.
, and
Kannellakopoulos
,
I.
, 1997, “
Nonlinear Design of Active Suspensions
,”
IEEE Control Syst. Mag.
0272-1708,
17
, pp.
45
49
.
10.
Yu
,
F.
, and
Crolla
,
D. A.
, 1998, “
An Optimal Self-Tuning Controller for an Active Suspension
,”
Veh. Syst. Dyn.
0042-3114,
29
, pp.
51
65
.
11.
Fialho
,
I.
, and
Balas
,
G. J.
, 2002, “
Road Adaptive Active Suspension Design Using Linear Parameter-Varying Gain-Scheduling
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
1
), pp.
43
54
.
12.
Yamashita
,
M.
,
Fujimori
,
K.
,
Hayakawa
,
K.
, and
Kimura
,
H.
, 1994, “
Application of H∞ Control to Active Suspension Systems
,”
Automatica
0005-1098,
30
(
11
), pp.
1717
1729
.
13.
Park
,
J. H.
, and
Kim
,
Y. S.
, 1999, “
An H∞ Controller for Active Suspensions and Its Robustness Based on a Full-Car Model
,”
Proceedings of the 14th IFAC World Congress
, pp.
503
508
.
14.
Karlsson
,
N.
,
Dahleh
,
M.
, and
Horvat
,
D.
, 2001, “
Nonlinear H∞ Control of Active Suspensions
,”
Proc. Amer. Contr. Conf.
,
Arlington
, VA, pp.
3329
3334
.
15.
Tuan
,
H. D.
,
Ono
,
E.
, and
Apkarian
,
P.
, 2001, “
Nonlinear H∞ Control for an Integrated Suspension System via Parameterized Linear Matrix Inequality Characterizations
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
9
(
1
), pp.
175
185
.
16.
Smith
,
M. C.
, and
Wang
,
F. -C.
, 2002, “
Controller Parameterization for Disturbance Response Decoupling: Application to Vehicle Active Suspension Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
3
), pp.
393
407
.
17.
Hayakawa
,
K.
,
Matsumoto
,
K.
,
Yamashita
,
M.
,
Suzuki
,
Y.
,
Fujimori
,
K.
, and
Kimura
,
H.
, 1999, “
Robust H∞-Output Feedback Control of Decoupled Automobile Active Suspension Systems
,”
IEEE Trans. Autom. Control
0018-9286,
44
, pp.
392
-
396
.
18.
Chen
,
H.
, and
Guo
,
K. -H.
, 2005, “
Constrained H∞ Control of Active Suspensions: An LMI Approach
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
3
), pp.
412
421
.
19.
International Organization for Standardization
, 1995, “
Mechanical Vibration—Road Surface Profiles—Reporting of Measured Data
,” ISO 8608.
20.
Yu
,
Z.
, 1999,
Automotive Engineering
2nd ed.,
China Machine Press
, Beijing.
21.
Nesterov
,
Y.
, and
Nemirovsky
,
A.
, 1994,
Interior Point Polynomial Methods in Convex Programming
,
SIAM
, Philadelphia.
22.
Gahinet
,
P.
,
Nemirowskii
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M.
, 1994, “
The LMI Control Toolbox
,”
Proc. 33rd IEEE Conf. Decision Contr.
,
Lake Buena Vista
, FL, December 1994, pp.
2038
2041
.
23.
Scherer
,
C. W.
,
Gahinet
,
P.
, and
Chilali
,
M.
, 1997, “
Multi-Objective Output-Feedback Control via LMI Optimization
,”
IEEE Trans. Autom. Control
0018-9286,
42
, pp.
896
911
.
24.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
, Philadelphia.
25.
Rotstein
,
H.
, and
Sideris
,
A.
, 1994, “
H∞-Optimization with Time-Domain Constraints
,”
IEEE Trans. Autom. Control
0018-9286,
39
(
4
), pp.
762
779
.
26.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1996,
Robust and Optimal Control
,
Prentice Hall
, Upper Saddle River, NJ.
You do not currently have access to this content.