The PID trajectory tracking controller for Lagrangian systems shows performance limitation imposed by inverse dynamics according to desired trajectory. Since the equilibrium point cannot be defined for the control system involving performance limitation, we define newly the quasiequilibrium region as an alternative for equilibrium point. This analysis result of performance limitation can guide us the autotuning method for PID controller. The quasiequilibrium region is used as the target performance of autotuning PID trajectory tracking controller. The autotuning law is derived from the direct adaptive control scheme, based on the extended disturbance input-to-state stability and the characteristics of performance limitation. Finally, experimental results show that the target performance can be achieved by the proposed automatic tuning method.

1.
Choi
,
Y.
, and
Chung
,
W. K.
, 2001, “
On the optimality and performance of PID controller for robotic manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1142
1148
.
2.
Choi
,
Y.
,
Chung
,
W. K.
, and
Suh
,
I. H.
, 2001, “
Performance and H∞ optimality of PID trajectory tracking controller for Lagrangian systems
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(6), pp.
857
869
.
3.
Choi
,
Y.
,
Chung
,
W. K.
, and
Youm
,
Y.
, 2001, “
On the optimal PID performance tuning for robotic manipulators
,” in
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
1656
1661
.
4.
Park
,
J.
, and
Chung
,
W. K.
, 2000, “
Design of a robust H∞ PID control for industrial manipulators
,”
Trans. ASME, J. Dyn. Syst. Meas.
0022-0434
122
(4), pp.
803
812
.
5.
Astrom
,
K.
, and
Hagglund
,
T.
, 1995,
PID Controllers: Theory, Design, and Tuning
,
Instrument Society of America
, Research Triangle Park.
6.
He
,
J. B.
,
Wang
,
Q. G.
, and
Lee
,
T. H.
, 2000, “
PI/PID controller tuning via LQR approach
,”
Chem. Eng. Sci.
0009-2509,
55
, pp.
2429
2439
.
7.
Yu
,
C. C.
, 1999,
Autotuning of PID Controllers: Relay Feedback Approach
,
Springer
, Berlin.
8.
Haddad
,
W. M.
, and
Hayakawa
,
T.
, 2000, “
Direct adaptive control for nonlinear systems with bounded energy L2 disturbances
,”
IEEE Conf. on Decision and Control
, pp.
2419
2423
.
9.
Haddad
,
W. M.
, and
Hayakawa
,
T.
, 2000, “
Direct adaptive control for nonlinear uncertain systems with exogenous disturbances
,” in
Proceeding of the American Control Conference
, pp.
4425
4429
.
10.
Roup
,
A. V.
, and
Bernstein
,
D. S.
, 2000, “
Stabilization of a class of nonlinear systems using direct adaptive control
,”
Proceedings of the American Control Conference
, pp.
3148
3152
.
11.
Chellaboina
,
V.
,
Haddad
,
W. M.
, and
Hayakawa
,
T.
, 2001, “
Direct adaptive control for nonlinear matrix second-order dynamical systems with state-dependent uncertainty
,” in
Proceedings of the American Control Conference
, pp.
4247
4252
.
12.
Johansson
,
R.
, 1990, “
Adaptive control of robot manipulator motion
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
4
), pp.
483
490
.
13.
Ortega
,
R.
, and
Spong
,
M. W.
, 1988, “
Adaptive motion control of rigid robots: A tutorial
,”
IEEE Conf. on Decision and Control
, pp.
1575
1584
.
14.
Slotine
,
J.-J. E.
, Dec. 1988, “
Putting physics in control-the example of robotics
,”
IEEE Control Syst. Mag.
0272-1708,
8
(
6
), pp.
12
17
.
15.
Angeli
,
D.
, 1999, “
Input-to-state stability of PD-controlled robotic systems
,”
Automatica
0005-1098,
35
, pp.
1285
1290
.
16.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
, 1995,
Nonlinear and Adaptive Control Design
,
Wiley
, New York.
17.
Krstic
,
M.
, and
Li
,
Z. H.
, 1998, “
Inverse optimal design of input-to-state stabilizing nonlinear controllers
,”
IEEE Trans. Autom. Control
0018-9286,
43
, pp.
336
350
.
18.
Sontag
,
E. D.
, and
Wang
,
Y.
, 1995, “
On characterizations of the input-to-state stability property
,”
Syst. Control Lett.
0167-6911,
24
(3), pp.
351
359
.
19.
Park
,
J.
,
Chung
,
W. K.
, and
Youm
,
Y.
, 1998, “
Analytic nonlinear H∞ optimal control for robot manipulators
,” in
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
2709
2715
.
20.
Krstic
,
M.
,
Sun
,
J.
, and
Kokotovic
,
P. V.
, June 1996, “
Robust control of nonlinear systems with input unmodeled dynamics
,”
IEEE Trans. Autom. Control
0018-9286,
41
(6), pp.
913
920
.
21.
Khosla
,
P. K.
, 1989, “
Categorization of parameters in the dynamics robot model
,”
IEEE Trans. Rob. Autom.
1042-296X,
5
(3), pp.
261
268
.
You do not currently have access to this content.