A new time-discretization method for the development of a sampled-data representation of a nonlinear continuous-time input-driven system with time delay is proposed. It is based on the Taylor-Lie series expansion method and zero-order hold assumption. The mathematical structure of the new discretization scheme is explored and characterized as useful for establishing concrete connections between numerical and system-theoretic properties. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. The resulting time-discretization provides a finite-dimensional representation for nonlinear control systems with time-delay enabling the application of existing controller design techniques. The performance of the proposed discretization procedure is evaluated using the case study of a two-degree-of-freedom mechanical system that exhibits nonlinear behavior. Various sampling rates and time-delay values are considered.

1.
Holt
,
B. R.
, and
Morari
,
M.
, 1985, “
Design of Resilient Processing Plants—V.: The Effect of Deadtime on Dynamic Resilience
,”
Chem. Eng. Sci.
0009-2509,
40
, pp.
1229
1237
.
2.
Jerome
,
N. F.
, and
Ray
,
W. H.
, 1986, “
High-Performance Multivariable Control Strategies for Systems Having Time Delays
,”
AIChE J.
0001-1541,
32
, pp.
914
931
.
3.
Insperger
,
N.
, and
Stépán
,
N.
, 2002, “
Semi-Discretization Method for Delayed-Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
, pp.
503
518
.
4.
Halevi
,
Y.
, and
Ray
,
A.
, 1988,
Integrated Communication and Control Systems: Part I—Analysis
,
ASME J. Dyn. Syst., Meas., Control
0022-0434,
110
, pp.
367
373
.
5.
Jalili
,
N.
, and
Olgac
,
N.
, 2000, “
A Sensitivity Study on Optimum Delayed Feedback Vibration Absorber
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
, pp.
314
321
.
6.
Nilsson
,
J.
, 1998, “
Real-Time Control Systems With Delays
,” Ph.D. Dissertation, Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden.
7.
Walsh
,
G. C.
,
Ye
,
H.
, and
Bushnell
,
L.
, 1999, “
Stability Analysis of Networked Control Systems
,”
Proc. Amer. Control Conf.
, San Diego, CA, pp.
2876
2880
.
8.
Zhang
,
W.
,
Branicky
,
M. S.
, and
Phillips
,
S. M.
, 2001, “
Stability of Networks Control Systems
,”
IEEE Control Syst. Mag.
0272-1708,
21
, pp.
84
99
.
9.
Wright
,
R. A.
, and
Kravaris
,
C.
, 1999, “
Nonlinear Decoupling in the Presence of Sensor and Actuator Deadtimes
,”
Proc. Amer. Control Conf.
, San Diego, CA, pp.
1503
1507
.
10.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
, 1998,
Digital Control of Dynamic Systems
,
Addison-Wesley
, New York.
11.
Vaccaro
,
R. J.
, 1995,
Digital Control
,
McGraw-Hill
, New York.
12.
Kazantzis
,
N.
, and
Kravaris
,
C.
, 1997, “
System-Theoretic Properties of Sampled-Data Representations of Nonlinear Systems Obtained via Taylor-Lie Series
,”
Int. J. Control
0020-7179,
67
, pp.
997
1020
.
13.
Kazantzis
,
N.
, and
Kravaris
,
C.
, 1999, “
Time-Discretization of Nonlinear Control Systems via Taylor Methods
,”
Comput. Chem. Eng.
0098-1354,
23
, pp.
763
784
.
14.
Svoronos
,
S. A.
,
Papageorgiou
,
D.
, and
Tsiligiannis
,
C.
, 1994, “
Discretization of Nonlinear Control Systems via the Carleman Linearization
,”
Chem. Eng. Sci.
0009-2509,
49
, pp.
3263
3267
.
15.
Monaco
,
S.
, and
Normand-Cyrot
,
D.
, 1985, “
On the Sampling of a Linear Analytic Control System
,”
Proc. of 24th IEEE Conference on Decision and Control
, Ft. Lauderdale, FL,
1457
1462
.
16.
Monaco
,
S.
,
Normand-Cyrot
,
D.
, and
Stornelli
,
S.
, 1986, “
On the Linearizing Feedback in Nonlinear Sampled Data Control Schemes
,”
Proc. of 25th IEEE Conference on Decision and Control
, Athens, Greece,
2056
2060
.
17.
Isidori
,
A.
, 1989,
Nonlinear Control Systems: An Introduction
,
Springer-Verlag
, Berlin.
18.
Harris
,
K. R.
, and
Palazoglu
,
A.
, 1997, “
Studies on the Analysis of Nonlinear Processes Via Functional Expansions: I—Solution of Nonlinear ODEs
,”
Chem. Eng. Sci.
0009-2509,
52
, pp.
3195
.
19.
Nešić
,
D.
,
Teel
,
A. R.
, and
Kokotović
,
P. V.
, 1999, “
Sufficient Conditions for Stabilization of Sampled-Data Nonlinear Systems via Discrete-Time Approximations
,”
Syst. Control Lett.
0167-6911,
38
, pp.
259
270
.
20.
Zaccarian
,
L.
,
Teel
,
A. R.
, and
Nešić
,
D.
, 2003, “
On Finite Gain Lp-Stability of Nonlinear Sampled-Data Systems
,”
Syst. Control Lett.
0167-6911,
49
, pp.
201
212
.
21.
Mendes
,
E. M.
, and
Billings
,
S. A.
, 2002, “
A Note on Discretization of Nonlinear Differential Equations
,”
Chaos
1054-1500,
12
, pp.
66
71
.
22.
Hohmann
,
S.
,
Konrad
,
A.
, and
Krebs
,
V.
, 2001, “
Exact Sampled-Data Representation of Continuous-Time Nonlinear Systems by Finite Polynomials With Exactly Determined Coefficients
,”
Proc. of 2001 American Control Conference
, Vol.
2
, pp.
1628
1633
.
23.
Vidyasagar
,
M.
, 1978,
Nonlinear Systems Analysis
,
Prentice Hall
, Englewood Cliffs, NJ.
24.
Gröbner
,
W.
, 1967,
Die Lie-Reihen und ihre Anwendungen
,
VEB Deutscher Verlag der Wissenschaften
, Berlin.
25.
Chen
,
C. T.
, 1984,
Linear System Theory and Design
, Holt, Rinhart, and Winston, Orlando.
26.
Henrici
,
P. K.
, 1964,
Elements of Numerical Analysis
,
Wiley
, New York.
27.
Isaacson
,
E.
, and
Keller
,
H. B.
, 1966,
Analysis of Numerical Methods
,
Wiley
, New York.
28.
Sonnemans
,
P. J. M.
,
De Goey
,
L. P. H.
, and
Nieuwenhuizen
,
J. K.
, 1991, “
Optimal Use of a Numerical Method for Solving Differential Equations Based on Taylor Series Expansions
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
471
499
.
29.
Stoer
,
J.
, and
Bulirsch
,
R.
, 1993,
Introduction to Numerical Analysis
,
Springer-Verlag
, New York.
You do not currently have access to this content.