A controller consisting of three schemes, one proportional gain, one pulse, and one ramp, is proposed to achieve precise and fast pointing control under the presence of stick-slip friction. Design of the controller is based on two distinctive features of friction, the varying sticking force and presliding displacement of contacts under static friction. The latter is the main idea behind the ramp scheme to accomplish the fast pointing task. Implementation of this multistage control strategy requires position measurement only. Experimental results demonstrate the effectiveness of the proposed controller for the desired performance.
Issue Section:
Technical Papers
Keywords:
controllers,
machine control,
stiction,
sampled data systems,
DC motors,
stability,
robust control
1.
Swevers
, J.
, Al-Bender
, F.
, Ganseman
, C. G.
, and Prajogo
, T.
, 2000
, “An Integrated Friction Model Structure With Improved Presliding Behavior for Accurate Friction Compensation
,” IEEE Trans. Autom. Control
, 45
, pp. 675
–686
.2.
Armstrong-He´louvry, B., 1993, Control of Machines With Friction, edited by Norwell, Kluwer.
3.
Armstrong-He´louvry
, B.
, Dupont
, P.
, and Canduas de Wit
, C.
, 1994
, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,” Automatica
, 30
, pp. 1083
–1138
.4.
Canudas de Wit
, C.
, Noe¨l
, P.
, Aubin
, A.
, and Brogliato
, B.
, 1991
, “Adaptive Friction Compensation in Robot Manipulators: Low Velocities
,” Int. J. Robot. Res.
, 10
, pp. 189
–199
.5.
Canudas de Wit
, C.
, Astrom
, K. J.
, and Braun
, K.
, 1987
, “Adaptive Friction Compensation in DC-Motor Drives
,” IEEE J. Rob. Autom.
, RA-3
, pp. 681
–685
.6.
Southward
, S. C.
, Radcliffe
, C. J.
, and MacCluer
, C. R.
, 1991
, “Robust Nonlinear Stick-Slip Friction Compensation
,” ASME J. Dyn. Syst., Meas., Control
, 113
, pp. 639
–645
.7.
Guzzella, L., and Glattfelder, A. H., 1992, “Pointing of Stick-Slip Systems Comparison of a Conventional and a Variable-Structure Controller Design,” Proc. 1992 American Control Conference, Vol. Wp13, pp. 1277–1281.
8.
Johnson
, C. T.
, and Lorenz
, R. D.
, 1992
, “Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms
,” IEEE Trans. Ind. Appl.
, 28
, pp. 1392
–1398
.9.
Kim
, J. H.
, Chae
, H. K.
, Jeon
, J. Y.
, and Lee
, S. W.
, 1996
, “Identification and Control of Systems With Friction Using Accelerated Evolutionary Programming
,” IEEE Trans. Control Syst. Technol.
, 16
, pp. 38
–47
.10.
Dahl, P. R., 1977, “Measurement of Solid Friction Parameters of Ball Bearings,” in Proc. of 6th Annual Symp. On Incremental Motion, Control Systems and Devices, University of Illinois, ILO.
11.
Canudas de Wit
, C.
, Olsson
, H.
, A˚stro¨m
, K.
, and Lischinsky
, P.
, 1995
, “A New Model for Control of Systems With Friction
,” IEEE Trans. Autom. Control
, 40
, pp. 419
–425
.12.
Haessig
, D. A.
, and Friedland
, B.
, 1991
, “On the Modeling and Simulation of Friction
,” ASME J. Dyn. Syst., Meas., Control
, 113
, pp. 345
–362
.13.
Canudas de Wit
, C.
, and Lischinsky
, P.
, 1997
, “Adaptive Friction Compensation With Partially Known Dynamic Friction Model
,” Int. J. Adapt. Control Signal Process.
, Vol. II
, pp. 65
–80
.14.
Bonsignore
, A.
, Ferretti
, G.
, and Magnani
, G.
, 1999
, “Analytical Formulation of the Classical Friction Model for Motion Analysis and Simulation
,” Math. Comput. Modell.
, 5
, pp. 43
–54
.15.
Yang
, S.
, and Tomizuka
, M.
, 1988
, “Adaptive Pulse Width Control for Precise Pointing Under the Influence of Stiction and Coulomb Friction
,” ASME J. Dyn. Syst., Meas., Control
, 110
, pp. 221
–227
.16.
De Weerth
, S. P.
, Nielsen
, L.
, Mead
, C. A.
, and A˚stro¨m
, K. J.
, 1991
, “A Simple Neuron Servo
,” IEEE Trans. Neural Netw.
, 2
, pp. 248
–251
.17.
Popovic, M. R., Gorinevsky, D. M., and Goldenberg, A. A., 1995, “Fuzzy Logic Controller for Accurate Pointing of Direct-Drive Mechanism Using Force Pulses,” IEEE Int. Conference on Robotics and Automation, pp. 1166–1171.
18.
Hojjat
, Y.
, and Higuchi
, T.
, 1991
, “Application of Electromagnetic Impulsive Force to Precise Positioning
,” Int. J. Jpn. Soc. Precis. Eng.
, 25
, pp. 39
–44
.19.
Futami
, S.
, Furutani
, A.
, and Yoshida
, S.
, 1990
, “Nanometer Positioning and Its Micro-Dynamics
,” Nanotechnology
, 1
, pp. 31
–37
.20.
Ro
, P. I.
, and Hubbel
, P. I.
, 1993
, “Model Reference Adaptive Control of Dual-Mode Micro/Macro Dynamics of Ball Screws for Nanometer Motion
,” ASME J. Dyn. Syst., Meas., Control
, 115
, pp. 103
–108
.21.
Huang
, S. J.
, Yen
, J. Y.
, and Lu
, S. S.
, 1999
, “Dual Mode Control of a System With Friction
,” IEEE Trans. Control Syst. Technol.
, 7
, pp. 306
–314
.22.
Wu
, R. H.
, and Tung
, P. C.
, 2002
, “Studies of Stick-Slip Friction, Presliding Displacement and Hunting
,” ASME J. Dyn. Syst., Meas., Control
, 124
, pp. 111
–117
.23.
Polycarpou, A., and Soom, A., 1992, “Transitions Between Sticking and Slipping, in Friction-Induced Vibration, Chatter, Squeal, and Chaos,” Proc. ASME Winter Annual Meeting, New York, ASME, Volume DE-Vol. 49, pp. 139–148.
24.
Dupont
, P.
, Hayward
, V.
, Armstrong
, B.
, and Altpeter
, F.
, 2002
, “Single State Elasto-Plastic Friction Models
,” IEEE Trans. Autom. Control
, 47
, pp. 787
–792
.Copyright © 2004
by ASME
You do not currently have access to this content.