A controller consisting of three schemes, one proportional gain, one pulse, and one ramp, is proposed to achieve precise and fast pointing control under the presence of stick-slip friction. Design of the controller is based on two distinctive features of friction, the varying sticking force and presliding displacement of contacts under static friction. The latter is the main idea behind the ramp scheme to accomplish the fast pointing task. Implementation of this multistage control strategy requires position measurement only. Experimental results demonstrate the effectiveness of the proposed controller for the desired performance.

1.
Swevers
,
J.
,
Al-Bender
,
F.
,
Ganseman
,
C. G.
, and
Prajogo
,
T.
,
2000
, “
An Integrated Friction Model Structure With Improved Presliding Behavior for Accurate Friction Compensation
,”
IEEE Trans. Autom. Control
,
45
, pp.
675
686
.
2.
Armstrong-He´louvry, B., 1993, Control of Machines With Friction, edited by Norwell, Kluwer.
3.
Armstrong-He´louvry
,
B.
,
Dupont
,
P.
, and
Canduas de Wit
,
C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
, pp.
1083
1138
.
4.
Canudas de Wit
,
C.
,
Noe¨l
,
P.
,
Aubin
,
A.
, and
Brogliato
,
B.
,
1991
, “
Adaptive Friction Compensation in Robot Manipulators: Low Velocities
,”
Int. J. Robot. Res.
,
10
, pp.
189
199
.
5.
Canudas de Wit
,
C.
,
Astrom
,
K. J.
, and
Braun
,
K.
,
1987
, “
Adaptive Friction Compensation in DC-Motor Drives
,”
IEEE J. Rob. Autom.
, RA-
3
, pp.
681
685
.
6.
Southward
,
S. C.
,
Radcliffe
,
C. J.
, and
MacCluer
,
C. R.
,
1991
, “
Robust Nonlinear Stick-Slip Friction Compensation
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
639
645
.
7.
Guzzella, L., and Glattfelder, A. H., 1992, “Pointing of Stick-Slip Systems Comparison of a Conventional and a Variable-Structure Controller Design,” Proc. 1992 American Control Conference, Vol. Wp13, pp. 1277–1281.
8.
Johnson
,
C. T.
, and
Lorenz
,
R. D.
,
1992
, “
Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms
,”
IEEE Trans. Ind. Appl.
,
28
, pp.
1392
1398
.
9.
Kim
,
J. H.
,
Chae
,
H. K.
,
Jeon
,
J. Y.
, and
Lee
,
S. W.
,
1996
, “
Identification and Control of Systems With Friction Using Accelerated Evolutionary Programming
,”
IEEE Trans. Control Syst. Technol.
,
16
, pp.
38
47
.
10.
Dahl, P. R., 1977, “Measurement of Solid Friction Parameters of Ball Bearings,” in Proc. of 6th Annual Symp. On Incremental Motion, Control Systems and Devices, University of Illinois, ILO.
11.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
A˚stro¨m
,
K.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
, pp.
419
425
.
12.
Haessig
,
D. A.
, and
Friedland
,
B.
,
1991
, “
On the Modeling and Simulation of Friction
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
345
362
.
13.
Canudas de Wit
,
C.
, and
Lischinsky
,
P.
,
1997
, “
Adaptive Friction Compensation With Partially Known Dynamic Friction Model
,”
Int. J. Adapt. Control Signal Process.
, Vol.
II
, pp.
65
80
.
14.
Bonsignore
,
A.
,
Ferretti
,
G.
, and
Magnani
,
G.
,
1999
, “
Analytical Formulation of the Classical Friction Model for Motion Analysis and Simulation
,”
Math. Comput. Modell.
,
5
, pp.
43
54
.
15.
Yang
,
S.
, and
Tomizuka
,
M.
,
1988
, “
Adaptive Pulse Width Control for Precise Pointing Under the Influence of Stiction and Coulomb Friction
,”
ASME J. Dyn. Syst., Meas., Control
,
110
, pp.
221
227
.
16.
De Weerth
,
S. P.
,
Nielsen
,
L.
,
Mead
,
C. A.
, and
A˚stro¨m
,
K. J.
,
1991
, “
A Simple Neuron Servo
,”
IEEE Trans. Neural Netw.
,
2
, pp.
248
251
.
17.
Popovic, M. R., Gorinevsky, D. M., and Goldenberg, A. A., 1995, “Fuzzy Logic Controller for Accurate Pointing of Direct-Drive Mechanism Using Force Pulses,” IEEE Int. Conference on Robotics and Automation, pp. 1166–1171.
18.
Hojjat
,
Y.
, and
Higuchi
,
T.
,
1991
, “
Application of Electromagnetic Impulsive Force to Precise Positioning
,”
Int. J. Jpn. Soc. Precis. Eng.
,
25
, pp.
39
44
.
19.
Futami
,
S.
,
Furutani
,
A.
, and
Yoshida
,
S.
,
1990
, “
Nanometer Positioning and Its Micro-Dynamics
,”
Nanotechnology
,
1
, pp.
31
37
.
20.
Ro
,
P. I.
, and
Hubbel
,
P. I.
,
1993
, “
Model Reference Adaptive Control of Dual-Mode Micro/Macro Dynamics of Ball Screws for Nanometer Motion
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
103
108
.
21.
Huang
,
S. J.
,
Yen
,
J. Y.
, and
Lu
,
S. S.
,
1999
, “
Dual Mode Control of a System With Friction
,”
IEEE Trans. Control Syst. Technol.
,
7
, pp.
306
314
.
22.
Wu
,
R. H.
, and
Tung
,
P. C.
,
2002
, “
Studies of Stick-Slip Friction, Presliding Displacement and Hunting
,”
ASME J. Dyn. Syst., Meas., Control
,
124
, pp.
111
117
.
23.
Polycarpou, A., and Soom, A., 1992, “Transitions Between Sticking and Slipping, in Friction-Induced Vibration, Chatter, Squeal, and Chaos,” Proc. ASME Winter Annual Meeting, New York, ASME, Volume DE-Vol. 49, pp. 139–148.
24.
Dupont
,
P.
,
Hayward
,
V.
,
Armstrong
,
B.
, and
Altpeter
,
F.
,
2002
, “
Single State Elasto-Plastic Friction Models
,”
IEEE Trans. Autom. Control
,
47
, pp.
787
792
.
You do not currently have access to this content.