An active control strategy for the stabilization of parametric resonance in a magnetically levitated body is proposed. The characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated with the motion of a pendulum-type vibration absorber driven by an appropriate control torque. As a distinguished feature, the proposed control method does not rely on the effective autoparametric energy transfer between the main system and the absorber. Because the main system is not linearly coupled with the absorber, the drawback inherent in the increase of the system degrees of freedom (i.e., the increase of the linear vibrational mode for the main system due to the attachment of the absorber) is overcome. The effective frequency and amplitude of the pure-tone control input—the torque driving the vibration absorber—are designed so that the nonlinear action of the pendulum on the main system counteracts the effect of the resonant parametric excitation. The effectiveness of the theoretically proposed control method is experimentally validated using an apparatus that comprises a phase-lock loop system.

1.
Haxton
,
R. S.
, and
Barr
,
A. D. S.
,
1972
, “
The Autoparametric Vibration Absorber
,”
Trans. ASME Journal of Engineering for Industry
,
94
, pp.
119
125
.
2.
Tuer
,
K. L.
,
Duquette
,
A. P.
, and
Golnaraghi
,
M. F.
,
1992
, “
Vibration Control of a Flexible Beam Using a Rotational Internal Resonance Controller
,”
Journal of Sound and Vibration
,
167
, pp.
41
62
.
3.
Duquette
,
A. P.
,
Tuer
,
K. L.
, and
Golnaraghi
,
M. F.
,
1992
, “
Vibration Control of a Flexible Beam Using a Rotational Internal Resonance Controller (Part 2: Experiment)
,”
Journal of Sound and Vibration
,
167
, pp.
62
75
.
4.
Oueini
,
S. S.
,
Nayfeh
,
A. H.
, and
Golnaraghi
,
M. F.
,
1997
, “
A Theoretical and Experimental Implementation of a Control Method Based on Saturation
,”
Nonlinear Dynamics
,
13
, pp.
189
202
.
5.
Cartmell
,
M.
, and
Lawson
,
J.
,
1994
, “
Performance Enhancement of an Autoparametric Vibration Absorber by Means of Computer Control
,”
Journal of Sound and Vibration
,
177
(
2
), pp.
173
195
.
6.
Mustafa
,
G.
, and
Ertas
,
A.
,
1995
, “
Dynamics and Bifurcations of a Coupled Column-Pendulum Oscillator
,”
Journal of Sound and Vibration
,
182
(
3
), pp.
393
413
.
7.
Yabuno, H., Murakami, T., Kawazoe, J., and Aoshima, N., 2003, “Suppression of Parametric Resonance in Cantilever Beam with a Pendulum (Effect of Static Friction at the Supporting Point of the Pendulum),” Trans. ASME Journal of Vibration and Acoustics, in press.
8.
Yabuno
,
H.
,
Endo
,
Y.
, and
Aoshima
,
N.
,
1999
, “
Stabilization of 1/3-Order Subharmonic Resonance Using an Autoparametric Vibration Absorber
,”
Trans. ASME Journal of Vibration and Acoustics
,
121
, pp.
309
315
.
9.
Lacarbonara, W., Chin, C. M., and Soper, R. R., 1999, “Nonlinear Vibration Control of Distributed-Parameter Systems: Perturbation Approach,” ASME Materials and Mechanics Conference, Blacksburg, VA, USA.
10.
Lacarbonara
,
W.
,
Chin
,
C. M.
, and
Soper
,
R. R.
,
2002
, “
Open-Loop Nonlinear Vibration Control of Shallow Arches via Perturbation Approach
,”
Trans. ASME Journal of Applied Mechanics
,
69
, pp.
325
334
.
11.
Soper
,
R. R.
,
Lacarbonara
,
W.
,
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1999
, “
Open-Loop Resonance-Cancellation Control for a Base-Excited Pendulum
,”
Journal of Vibration and Control
,
7
, pp.
1265
1279
.
12.
Yabuno
,
H.
,
Seino
,
T.
,
Yoshizawa
,
M.
, and
Tsujioka
,
Y.
,
1989
, “
Dynamical Behavior of a Levitated Body with Magnetic Guides (Parametric Excitation of the Subharmonic Type Due to the Vertical Motion of Levitated Body)
,”
JSME International Journal
,
32
(
3
), pp.
428
435
.
13.
Zheng
,
X. J.
,
Wu
,
J. J.
, and
Zhou
,
Y. H.
,
2000
, “
Numerical Analyses on Dynamic Control of Five-Degree-of-Freedom Maglev Vehicle Moving on Flexible Guideways
,”
Journal of Sound and Vibration
,
235
(
1
), pp.
43
61
.
14.
Yabuno
,
H.
,
Fujimoto
,
N.
,
Yoshizawa
,
M.
, and
Tsujioka
,
Y.
,
1991
, “
Bouncing and Pitching Oscillations of Magnetically Levitated Body due to the Guideway Roughness
,”
JSME International Journal
,
34
(
2
), pp.
192
199
.
15.
Nayfeh, A. H., 2000, Nonlinear Interactions, Wiley Interscience.
16.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, Wiley Interscience.
17.
Algrain
,
M.
,
Hardt
,
S.
, and
Ehlers
,
D.
,
1997
, “
A Phase-Lock-Loop-Based Control System for Suppressing Periodic Vibration in Smart Structural Systems
,”
Smart Materials and Structures
,
6
, pp.
10
22
.
You do not currently have access to this content.