A nonlinear state-space dynamic model of a resonating single fiber scanner is developed to understand scan distortion—jump, whirl, amplitude dependent amplitude and phase shifts—and as the basis for controllers to remove those distortions. The non-planar nonlinear continuum dynamics of a resonating base excited cantilever are reduced to a set of state-space coupled Duffing equations with centripetal acceleration. Methods for experimentally determining the model parameters are developed. The analytic frequency responses for raster, spiral and propeller scans are derived, and match experimental frequency responses for all three scan patterns, for various amplitudes, and using the same model parameters.
1.
Seibel, E. J., Smithwick, Q. Y. J., Brown, C. M., and Reinhall, P. G., 2001, “Single Fiber Flexible Endoscope: General Design for Small Size, High Resolution, and Wide Field of View.” Biomonitoring and Endoscopy Technologies, Proceedings of the SPIE; 4159, pp. 29–39.
2.
Smithwick, Q. Y. J., Seibel, E. J., Reinhall, and P. G., Vagners, J., 2001, “Control Aspects of the Scanning Single Fiber Flexible Endoscope.” Optical Fibers and Sensors for Medical Applications, Proceedings of the SPIE, 4253, pp. 176–188.
3.
Pai
, P.
, and Nayfeh
, A. H.
, 1990
, “Non-linear Non-planar Oscillations of a Cantilever Beam under Lateral Base Excitations
,” Int. J. Non-Linear Mech.
, 25
(5
), pp. 455
–474
.4.
Oueini
, S. S.
, Nayfeh
, A. H.
, 1999
, “Single-Mode Control of a Cantilever Beam Under Principal Parametric Excitation
,” J. Sound Vib.
, 224
(1
), pp. 33
–47
.5.
Haight
, E. C.
, King
, and W. W.
, 1972
, “Stability of Nonlinear Oscillations of an Elastic Rod
,” J. Acoust. Soc. Am.
, 52
(3-Part 2
), pp. 899
–911
.6.
Crespo da Silva
, M. R. M.
, and Glynn
, C. C.
, 1978
, “Nonlinear Flexural-Flexural Torsional Dynamics of Inextensional Beams I & II
,” J. Struct. Mech.
, 6
(4
), pp. 437
–461
.7.
Yang
, Y. T.
, Heh
, D.
, Wei
, P. K.
, Fann
, W. S.
, Gray
, M. H.
, and Hsu
, J. W. P.
, 15 Feb 1997
, “Vibration Dynamics of Tapered Optical Fiber Probes
,” J. Appl. Phys.
, 81
(4
), pp. 1623
–1627
.8.
Antognozzi
, M.
, Binger
, D. R.
, Humphris
, A. D. L.
, James
, P. J.
, and Miles
, M. J.
, 2001
, “Modeling of cylindrically tapered cantilevers for transverse dynamic force microscopy (TDFM)
,” Ultramicroscopy
, 86
, pp. 223
–232
.9.
Meirovitch, L., 1997, Principles and Techniques of Vibrations, Prentice Hall, pg. 120.
10.
Inman, D., 1994, Engineering Vibration, Prentice Hall.
11.
Thomson, W., 1988, Theory of Vibration with Applications, Prentice Hall, pg. 71.
12.
Chen
, C. J.
, 1992
, “Electromechanical Deflections of Piezotubes with Quartered Electrodes
,” Appl. Phys. Lett.
, 60
, pg. 132
pg. 132
.13.
Croft, D., and Devasia, S., 1997, “High Precision Positioning Stages for micro/nano Lithography,” International Society for Optical Engr., Proceedings of the SPIE, 3225, pp. 68–75.
14.
Ho
, C. H.
, Scott
, R. A.
, and Eisley
, J. G.
, 1975
, “Non-Planar, Non-Linear Oscillations of a Beam—I. Forced Motions
,” Int. J. Non-Linear Mech.
, 10
(2
), pp. 113
–127
.15.
Jordan, D. W., 1979, Nonlinear Ordinary Differential Equations, Oxford University Press, pg. 129.
16.
Seibel, E. J., Smithwick, Q. Y. J., Crossman-Bosworth, J., and Myers, J. A., 2002, “Prototype Scanning Fiber Endoscope,” Optical Fibers and Sensors for Medical Applications II, Proceedings of the SPIE, 4616, pp. 173–179.
17.
Nayfeh, A. H., 2000, Nonlinear Interactions: Analytic, Computational, and Experimental Methods, Wiley-Interscience Publication.
18.
Slotine, J. J., Li, W. L., 1992, Applied Nonlinear Control, New Jersey: Prentice-Hall.
Copyright © 2004
by ASME
You do not currently have access to this content.