This paper describes a systematic procedure to design robust adaptive controllers for a class of nonlinear systems with unknown functions of unknown bounds based on backstepping and sliding mode techniques. These unknown functions can be unmodeled system nonlinearities, uncertainties and disturbances with unknown bounds. Both state feedback and output feedback designs are addressed. In the design procedure, the upper bounds of the unknown functions are estimated using an adaptation strategy, and the estimates are used to design stabilizing functions and control inputs based on the backstepping design methodology. The proposed controllers guarantee that the tracking errors converge to a residual set close to zero exponentially for both state feedback and output feedback designs, while maintaining the boundedness of all other variables.

1.
Isidori, A., 1995, Nonlinear Control Systems, Springer-Verlag.
2.
Kanellakopoulos
,
I.
,
Kokotovic
,
P. V.
, and
Morse
,
A. S.
,
1991
, “
Systematic Design of Adaptive Controllers for Feedback Linearizable Systems
,”
IEEE Trans. Autom. Control
,
36
, pp.
1241
1253
.
3.
Krstic, M., Kanellakopoulos, I., and Kokotovic, P. V., 1995, Nonlinear And Adaptive Control Design, John Wiley & Sons.
4.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
,
1992
, “
Adaptive Nonlinear Control Without Over-parametrization
,”
Syst. Control Lett.
,
19
, pp.
177
185
.
5.
Ioannou, P. A., and Sun, J., 1996, Robust Adaptive Control, Prentice Hall.
6.
Khalil, H. K., 1996, Nonlinear Systems, Prentice Hall.
7.
Lin
,
W.
, and
Shen
,
T.
,
1999
, “
Robust passivity and feedback design for minimum-phase nonlinear systems with structural uncertainty
,”
Automatica
,
35
, pp.
35
47
.
8.
Roh
,
Y. H.
, and
Oh
,
J. H.
,
2001
, “
Sliding Mode Control for Robust Stabilization of Uncertain Input-Delay Systems
,”
Trans. on Control, Automation and System Engineering
,
4
, pp.
98
103
.
9.
Freeman, R. A., and Kokotovic, P. V., 1992, “Backstepping Design of Robust Controllers for a Class of Nonlinear Systems,” Proceedings of the IFAC Nonlinear Control Systems Design Symposium, pp. 307–312.
10.
Marino
,
R.
, and
Tomei
,
P.
,
1998
, “
Robust Adaptive State-feedback Tracking of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
43
, pp.
84
89
.
11.
Ikhouane
,
F.
, and
Krstic
,
M.
,
1998
, “
Robustness of the Tuning Functions Adaptive Backstepping Design for Linear Systems
,”
IEEE Trans. Autom. Control
,
43
, pp.
431
437
.
12.
Itou, K., Shen, T., and Tamura, K., 2000, “Robust Control of Minimum-phase Nonlinear Systems with Disturbance Attenuation,” Proc. 3rd Asian Control Conference, pp. 217–222.
13.
Zhang
,
Y.
, and
Ioannou
,
P. A.
,
1999
, “
Robustness of Nonlinear Control Systems with Respect to Unmodeled Dynamics
,”
IEEE Trans. Autom. Control
,
44
, pp.
119
124
.
14.
Zinober, A. S. I., and Liu, P., 1996, “Robust control of Nonlinear Uncertain via Sliding Mode with Backstepping Design,” UKACC Int. Conference on Control, pp. 281–286.
15.
Gao, F., Liu, W. Q., Sreeram, V., and Teo, K. L., 1997, “Robust Control Design of Nonlinear Adaptive Control Systems with Unmodeled Dynamics,” Proc. of the 36th Conf. on Decision & Control, pp. 2073–2078.
16.
Ding
,
Z.
,
1998
, “
Robust Adaptive Control of Nonlinear Output-feedback Systems Under Bounded Disturbances
,”
IEE Proc.: Control Theory Appl.
,
145
, pp.
323
329
.
17.
Ding
,
Z.
,
2000
, “
Analysis and Design of Robust Adaptive Control for Nonlinear Output Feedback Systems Under Disturbances with Unknown Bounds
,”
IEE Proc.: Control Theory Appl.
,
147
, pp.
655
663
.
18.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
,
1992
, “
Adaptive Nonlinear Control Without Over-parametrization
,”
Syst. Control Lett.
,
19
, pp.
177
185
.
19.
Freeman
,
R. A.
, and
Kokotovic
,
P. V.
,
1993
, “
Design of ‘Softer’ Robust Nonlinear Control Laws
,”
Automatica
,
29
, pp.
1425
1437
.
20.
Marino
,
R.
, and
Tomei
,
P.
,
1993
, “
Global Adaptive Output Feedback Control of Nonlinear Systems, part I: Linear Parameterisation
,”
IEEE Trans. Autom. Control
,
38
, pp.
17
32
.
21.
Kreisselmeier
,
G.
,
1977
, “
Adaptive Observers with Exponential Rate of Convergence
,”
IEEE Trans. Autom. Control
,
22
, pp.
2
8
.
22.
Kanellakopoulos, I., Kokotovic, P. V., and Morse, A. S., 1991, “Adaptive Output-feedback Control of a Class of Nonlinear Systems,” Proc. of the 30th Conf. on Decision & Control, pp. 1082–1087.
23.
Ding
,
Z.
,
1999
, “
Almost Disturbance Decoupling of Uncertain Nonlinear Output Feedback Systems
,”
IEE Proc.: Control Theory Appl.
,
146
, pp.
220
226
.
24.
Jiang
,
Z.
, and
Praly
,
L.
,
1998
, “
Design of Robust Adaptive Controllers for Nonlinear Systems with Dynamic Uncertainties
,”
Automatica
,
34
, pp.
825
840
.
You do not currently have access to this content.