The aim of this work is to present an application of recent methods for solving the l1 design problem, based on the Scaled-Q approach, on a high-order, nonminimum phase system. We start by describing the system which is an open-channel hydraulic system (e.g., an irrigation canal). From the discretization and linearization of the set of two partial-derivative equations, a state-space model of the system is generated. This model is a high-order MIMO system (five external perturbations w, five control inputs u, 10 controlled outputs z, five measured outputs y, 65 states x) and is nonminimum phase. A controller is then designed by minimizing the l1 norm of the impulse response of the transfer matrix between the perturbations w and the outputs z. Time-domain constraints are added into the minimization problem in order to force integrators into the controller. The numerical resolution of the problem proved to be efficient, despite of the characteristics of the system. The obtained results are compared in the time-domain to classical PID and LQG controllers on the nonlinear system. The results are good in terms of performance and robustness, in particular for the rejection of the worst-case perturbation.

1.
Dahleh, M. A., and Diaz-Bobillo, I. J., 1995, “Control of Uncertain Systems: a Linear Programming Approach,” Prentice-Hall.
2.
Malaterre
,
P.-O.
,
Rogers
,
D. C.
, and
Schuurmans
,
J.
,
1998
, “
Classification of Canal Control Algorithms
,”
ASCE Journal of Irrigation and Drainage Engineering
,
124
, pp.
3
10
. ISSN 0733-9437.
3.
Shand, M., 1971, “Automatic Downstream Control Systems for Irrigation Canals,” Ph.D. thesis, University of California, Berkeley, CA, p. 159.
4.
Deltour, J.-L., 1992, “Application de l’automatique nume´rique a` la re´gulation des canaux; Proposition d’une me´thodologie d’e´tude,” Ph.D. thesis, Institut National Polytechnique de Grenoble, in French.
5.
Schuurmans
,
J.
,
Hof
,
A.
,
Dijkstra
,
S.
,
Bosgra
,
O. H.
, and
Brouwer
,
R.
,
1999
, “
Simple Water Level Controller for Irrigation and Drainage Canals
,”
J. Irrig. Drain Eng.
,
125
, pp.
189
195
.
6.
Litrico, X., 1999, “Mode´lisation, identification et commande robuste de syste`mes hydrauliques a` surface libre,” Ph.D. thesis, ENGREF—Cemagref, in French.
7.
Litrico
,
X.
, and
Georges
,
D.
,
1999
, “
Robust Continuous-Time and Discrete-Time Flow Control of a Dam-River System (II): Controller Design
,”
Appl. Math. Model.
,
23
(
11
), pp.
829
846
.
8.
Clemmens, A., 1999, “Real-Time Operation of Water Resources Systems: On-Versus off-Line Optimization,” 26th Annual conference of the Water Resources Planning and Management Division of the American Society of Civil Engineers, p. 10. Tempe, Arizona, June 6–9, 1999.
9.
Bodley
,
W.
, and
Wylie
,
E.
,
1978
, “
Control of Transient in Series Channel With Gates
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
pp.
1395
1407
.
10.
Liu
,
F.
,
Feyen
,
J.
,
Malaterre
,
P.-O.
,
Baume
,
J.-P.
, and
Kosuth
,
P.
,
1998
, “
Development and Evaluation of Canal Automation Algorithm CLIS
,”
J. Irrig. Drain Eng.
,
124
, pp.
40
46
. ISSN 0733-9437.
11.
Lin, Z., and Manz, D., 1992, “Optimal Operation of Irrigation Canal Systems Using Nonlinear Programming—Dynamic Simulation Model,” CEMAGREF-IIMI International Workshop, Montpellier, pp. 297–306.
12.
Sanders
,
B. F.
, and
Katopodes
,
N. D.
,
1999
, “
Control of Canal Flow by Adjoint Sensitivity Method
,”
J. Irrig. Drain Eng.
,
125
, pp.
287
297
.
13.
de Albuquerque
,
F. G.
, and
Labadie
,
J. W.
,
1997
, “
Optimal Nonlinear Predictive Control for Canal Operations
,”
J. Irrig. Drain Eng.
,
123
, pp.
45
54
.
14.
Chen, M.-L., 2001, “Commandes optimale et robuste des e´quations aux de´rive´es partielles re´gissant le comportement des syste`mes hydrauliques a` surface libre,” Ph.D. thesis, Institut National Polytechnique de Grenoble, in French.
15.
Khammash
,
M.
,
2000
, “
A New Approach to the Solution of the l1 Control Problem: the Scaled-Q Method
,”
IEEE Trans. Autom. Control
,
45
, pp.
180
187
.
16.
Baume, J.-P., Sau, J., and Malaterre, P.-O., 1998, “Modeling of Irrigation Channel Dynamics for Controller Design,” IEEE International Conference on Systems, Man and Cybernetics (SMC98), San Diego, CA, pp. 3856–3861.
17.
Khammash, M., Salapaka, M., and Van Voorhis, T., 1998, “Synthesis of Globally Optimal Controllers in l1 Using Linear Relaxation,” Proceedings of the 37th IEEE Conference on Decision and Control, 3, pp. 3315–3320.
18.
Balogun
,
O.
,
Hubbard
,
M.
, and
DeVries
,
J.
,
1988
, “
Automatic Control of Canal Flow Using Linear Quadratic Regulator Theory
,”
Journal of Hydraulic Engineering
,
114
(
1
), pp.
75
102
.
19.
Garcia
,
A.
,
Hubbard
,
M.
, and
DeVries
,
J.
,
1992
, “
Open Channel Transient Flow Control by Discrete Time LQR Methods
,”
Automatica
,
28
(
2
), pp.
255
264
.
20.
Cunge, J. A., 1966, “Etude d’un Sche´ma de Diffe´rences Finies Applique´ a` l’inte´gration Nume´rique d’un Certain Type d’e´quations Hyperboliques d’e´coulement,” Ph.D. thesis, Faculte´ des Sciences de Grenoble, in French.
21.
Cunge, J., Holly, F., and Verwey, A., 1980, “Practical Aspects of Computational River Hydraulics,” Pitman Advanced Publishing Program. p. 420.
22.
Mahmood, K., and Yevjevich, V., 1975, “Unsteady Flow in Open Channels, Volume 1 and 2,” Fort Collins, USA: Water resources publications. p. 923.
23.
Malaterre
,
P.-O.
,
1998
, “
Pilote: Linear Quadratic Optimal Controller for Irrigation Canals
,”
J. Irrig. Drain Eng.
,
124
, pp.
187
194
.
24.
Kwakernaak, H., and Sivan, R., 1972, “Linear Optimal Control Systems,” New York: Wiley-Interscience. p. 575.
25.
Skogestad, S., and Postlethwaite, I., 1998, “Multivariable Feedback Control, Analysis and Design,” Baffins lane, Chichester, West Sussex PO19 1UD, England: John Wiley and Sons Ltd.
26.
Qi, X., Khammash, M. H., and Salapaka, M. V., 2001, “Optimal Controller Synthesis With Multiple Objectives,” ACC.
27.
Malaterre, P.-O., and Baume, J.-P., 1999, “Optimum Choice of Control Action Variables and Linked Algorithms. Comparison of Different Alternatives,” ASCE-ICID Workshop on Modernization of Irrigation Water Delivery Systems, in Phoenix, AZ, USA.
28.
Baume, J.-P., Malaterre, P.-O., and Sau, J., 1999, “Tuning of PI to Control an Irrigation Canal Using Optimization Tools,” ASCE-ICID Workshop on Modernization of Irrigation Water Delivery Systems, in Phoenix, Arizona, USA.
29.
Larminat, P., 1993, “Automatique, Commande des Syste`mes Line´aires,” Herme`s. p. 321.
30.
Malaterre, P.-O., and Baume, J.-P., 1997, “Sic 3.0, a Simulation Model for Canal Automation Design,” International Workshop on the Regulation of Irrigation Canals: State of the Art of Research and Applications, RIC97, Marrakech (Morocco).
You do not currently have access to this content.