In this paper, a fuzzy control scheme, which employs the output feedback control approach, is suggested for the stabilization of nonlinear systems with uncertainties. The uncertain nonlinear system can be represented by uncertain Takagi-Sugeno (TS) fuzzy model structure, which is further rearranged to give a set of uncertain linear systems. A switching-type fuzzy-model-based controller, which utilizes the static output feedback control strategy, is designed based on this preliminary study. Theoretical analysis guarantees that under the control of the proposed technique, the uncertain nonlinear system is stabilizable by the switching-type static output-feedback fuzzy-model-based controller. Finally, two computer simulation examples are provided to show the effectiveness and feasibility of the developed controller design method.

1.
Chen, G., “Intelligent identification and control of chaotic dynamics,” in IEEE Symp. Circuits and Systems, pp. 5–8, 1996.
2.
Tanaka
,
K.
,
Ikeda
,
K.
, and
Wang
,
H. O.
,
1998
, “
A unified approach to controlling chaos via an LMI-based fuzzy control system design
,”
IEEE Trans. Fuzzy Syst.
,
45
, pp.
1021
1040
.
3.
Joo
,
Y. H.
,
Chen
,
G.
, and
Shieh
,
L. S.
,
1999
, “
Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems
,”
IEEE Trans. Fuzzy Syst.
,
7
, pp.
394
408
.
4.
Lee
,
H. J.
,
Park
,
J. B.
, and
Chen
,
G.
,
2001
, “
Robust fuzzy control of nonlinear systems with parametric uncertainties
,”
IEEE Trans. Fuzzy Syst.
,
9
, pp.
369
379
.
5.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy identification of systems and its applications to modeling and control
,”
IEEE Trans. Fuzzy Syst.
,
15
, pp.
116
132
.
6.
J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-fuzzy and soft computing. Prentice Hall, 1997.
7.
Wang
,
H. O.
,
Tanaka
,
K.
, and
Griffin
,
M.
,
1996
, “
An approach to fuzzy control of nonlinear systems: stability and design issues
,”
IEEE Trans. Fuzzy Syst.
,
4
, pp.
14
23
.
8.
Cao
,
S. G.
,
Rees
,
N. W.
, and
Feng
,
G.
,
1996
, “
Stability analysis and design for a class of continuous-time fuzzy control systems
,”
Int. J. Control
,
64
, pp.
1069
1087
.
9.
Cao
,
S. G.
,
Rees
,
N. W.
, and
Feng
,
G.
,
1997
, “
Analysis and design for a class of complex control systems part II: fuzzy controller design
,”
Automatica
,
33
, no
6
, pp.
1029
1039
.
10.
Xie
,
L.
,
1996
, “
Output feedback H∞ control of systems with parameter uncertainties
,”
Int. J. Control
,
63
, no.
4
, pp.
741
750
.
11.
Branicky
,
M. S.
,
1998
, “
Multiple Lyapunov functions and other analysis tools for switched and hybrid systems
,”
IEEE Trans. Autom. Control
,
43
, pp.
475
482
.
12.
Boyd, S., Ghaoui, E., Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalties in System and Control Theory. SIAM.
13.
Crusius
,
C. A. R.
, and
Trofino
,
A.
,
1999
, “
Sufficient LMI conditions for output feedback problems
,”
IEEE Trans. Autom. Control
,
44
, pp.
1053
1057
.
14.
Chen
,
G.
, and
Ueta
,
T.
,
1999
, “
Yet another chaotic attractor
,”
Int. J. Bifurcation Chaos
,
9
, no.
7
, pp.
1465
1466
.
15.
Ueta
,
T.
, and
Chen
,
G.
,
2000
, “
Bifurcation analysis of Chen’s equation
,”
Int. J. Bifurcation Chaos
,
10
, no.
8
, pp.
1917
1931
.
You do not currently have access to this content.