Ball, Helton, and Walker (BHW) derived the nonlinear dissipative controller formulas with the assumption implying that no stable mode uncontrollable from the exogenous input. The assumption is more restrictive than that considered in DGKF. In this paper, we address the numerical difficulty encountered by BHW’s controller formulas when the assumption is not satisfied. Next, we propose a modified nonlinear dissipative controller and successfully remove the numerical difficulty. We also show that the linear version of the proposed controller formulas is identical to the DGKF H controller. An example is given to demonstrate constructing the proposed controller and simulating the closed-loop pulse responses.

1.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
,
1989
, “
State Space Solutions to Standard H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
,
34
, pp.
831
846
.
2.
Van der Schaft
,
A. J.
,
1992
, “
L2-Gain Analysis of Nonlinear Systems and Nonlinear H∞ Control
,”
IEEE Trans. Autom. Control
,
37
, pp.
770
784
.
3.
Van der Schaft, A. J., 1996, L2-Gain and Passivity Techniques in Nonlinear Control, Springer, London.
4.
Isidori
,
A.
, and
Astolfi
,
A.
,
1992
, “
Disturbance Attenuation and H∞-Control Via Measurement Feedback in Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
37
(
9
), pp.
1283
1293
.
5.
Ball
,
J. A.
,
Helton
,
J. W.
, and
Walker
,
M. L.
,
1993
, “
H∞ Control for Nonlinear Systems with Output Feedback
,”
IEEE Trans. Autom. Control
,
38
, pp.
546
559
.
6.
Wise, K. A., and Sedwick J. L., 1994, “Successive Approximation Solution of the HJI Equation,” Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, Florida, U.S.A., pp. 1387–1391.
7.
Hu, S. S., Yang, P. H., and Chang, B. C., 1999, “A Successive Algorithm for Solving the Hamilton-Jacobi Equations,” Proceedings of the 1999 American Control Conference, San Diego, California, U.S.A., pp. 2842–2846.
8.
Hu, S. S., Yang, P. H., and Chang, B. C., 1998, “A Computational Issue in Nonlinear H∞ Control,” Proceedings of the 1998 American Control Conference, Philadelphia, Pennsylvania, U.S.A., pp. 3744–3745.
9.
Hu
,
S. S.
,
Chang
,
B. C.
,
Yeh
,
H. H.
, and
Kwatny
,
H. G.
,
2000
, “
Robust Nonlinear Controller Design for a Longitudinal Flight Control Problem
,”
the Asian Journal of Control
,
2
(
2
), pp.
111
121
.
10.
Petersen
,
I. R.
,
Anderson
,
B. D. O.
, and
Jonckheere
,
E. A.
,
1991
, “
A First Principles Solution to the Non-singular H∞ Control Problem
,”
Int. J. Robust Nonlinear Control
,
1
, pp.
171
185
.
11.
Postlethwaite
,
I.
,
Gu
,
D.-W.
, and
O’Young
,
S. D.
,
1988
, “
Some Computational Results on Size Reduction in H∞ Design
,”
IEEE Trans. Autom. Control
,
33
, pp.
177
185
.
12.
Boyd, S., Ghaoui, L. E., Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
13.
Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M., 1995, LMI Control Toolbox User’s Guide for MATLAB, the MathWoks, Inc.
14.
Hu, Shr-Shiung, 1998, Computational Issues in the Design of Robust Nonlinear Controllers, Ph.D. dissertation, Department of Mechanical Engineering and Mechanics, Drexel University, U.S.A.
15.
Helton, J. W., and James, M. R., 1999, Extending H∞ Control to Nonlinear Systems: Control of Nonlinear Systems to Achieve Performance Objective, SIAM, Philadelphia.
You do not currently have access to this content.