The development of a fault tolerant control (FTC) strategy to compensate for the degrading effects of fluid leakage across a faulty actuator piston seal in an electrohydraulic positioning system is presented. Due to relatively large variations in the dynamics of the plant, accomplishing the FTC task with a single controller requires a compensator of relatively high gain. Hence, the problem is first reformulated by discretizing the desired range of fault tolerance into a number of distinct levels. Next, a set of low gain local controllers is synthesized via quantitative feedback theory, such that the resulting closed-loop systems all conform to a priori defined performance specifications. Each controller is designed to compensate for a specific level of leakage. A simple switching algorithm is then employed to determine the appropriate control action by scaling each controller’s output based upon an estimate of the leakage level. Experimental results illustrate the ability of the designed FTC scheme to compensate for the degrading effect of the leakage fault.

1.
McLean, D., 1990, Automatic Flight Control Systems, Prentice-Hall, Englewood Cliffs, NJ.
2.
Merritt, H. E., 1967, Hydraulic Control Systems, Wiley, New York.
3.
Horowitz
,
I.
, 1959, “Fundamental Theory of Automatic Linear Control Systems,” Institute of Radio Engineers Trans. Autom. Control, 4, pp. 5–19.
4.
Bailey
,
F. N.
, and
Hui
,
C. N.
,
1991
, “
Loop Gain-Phase Shaping for Single-Input-Single-Output Robust Controllers
,”
IEEE Control Syst. Mag.
,
11
, pp.
93
101
.
5.
Reynolds, O. R., Pachter, M., and Houpis, C. H., 1994, “Full Envelope Flight Control System Design Using QFT,” Proceedings of the American Control Conference, Green Valley, AZ, 1, pp. 350–354.
6.
Keating, M. S., Pachter, M., and Houpis, C. H., 1995, “QFT Applied to Fault Tolerant Flight Control System Design,” Proceedings of the American Control Conference, Seattle, WA, 1, pp. 184–188.
7.
Phillips, S. N., Pachter, M., and Houpis, C. H., 1995, “A QFT Subsonic Envelope Flight Control System Design,” Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, KY, 1, pp. 537–544.
8.
Snell
,
S. A.
, and
Stout
,
P. W.
,
1996
, “
Quantitative Feedback Theory with a Scheduled Gain for Full Envelope Longitudinal Control
,”
J. Guid. Control Dyn.
,
19
, pp.
1095
1101
.
9.
Wu
,
S.-F.
,
Grimble
,
M. J.
, and
Wei
,
W.
,
2000
, “
QFT-Based Robust/Fault-Tolerant Flight Control Design for a Remote Pilotless Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
8
, pp.
1010
1016
.
10.
French
,
I. G.
, and
Cox
,
C. S.
,
1990
, “
Modeling, Design and Control of a Modern Electropneumatic Actuator
,”
IEE Proc.-D: Control Theory Appl.
,
137
, pp.
145
155
.
11.
Nam, Y., Lee, J., and Hong, S. K., 2000, “Force Control System Design for Aerodynamic Load Simulator,” Proceedings of the American Control Conference, Chicago, IL, 5, pp. 3043–3047.
12.
Pachter
,
M.
,
Houpis
,
C. H.
, and
Kang
,
K.
,
1997
, “
Modeling and Control of an Electro-Hydrostatic Actuator
,”
Int. J. Robust Nonlinear Control
,
7
, pp.
591
608
.
13.
Thompson
,
D. F.
,
Pruyn
,
J. S.
, and
Shukla
,
A.
,
1999
, “
Feedback Design for Robust Tracking and Robust Stiffness in Flight Control Actuators Using a Modified QFT Technique
,”
Int. J. Control
,
72
, pp.
1480
1497
.
14.
Niksefat
,
N.
, and
Sepehri
,
N.
,
2001
, “
Designing Robust Force Control of Hydraulic Actuators Despite System and Environmental Uncertainties
,”
IEEE Control Syst. Mag.
,
21
, pp.
66
77
.
15.
Niksefat, N., and Sepehri, N., 2001, “Fault Tolerant Control of Electrohydraulic Servo Positioning Systems,” Proceedings of the American Control Conference, Arlington, VA, 6, pp. 4472–4477.
16.
Kobylarz
,
T. J.
,
Pachter
,
M.
, and
Houpis
,
C. H.
,
1997
, “
Fuzzy Scheduling of Regional QFT Controllers
,”
Int. J. Robust Nonlinear Control
,
7
, pp.
661
674
.
17.
Alleyne, A., 1996, “Nonlinear Force Control of an Electrohydraulic Actuator,” Proceedings of the Japan/USA Symposium on Flexible Automation, Boston, MA, 1, pp. 193–200.
18.
Niksefat
,
N.
, and
Sepehri
,
N.
,
2000
, “
Design and Experimental Evaluation of a Robust Force Controller for an Electro-Hydraulic Actuator via Quantitative Feedback Theory
,”
Control Eng. Pract.
,
8
, pp.
1334
1345
.
19.
Thayer, W. J., 1965, Transfer Functions for Moog Servovalves, Moog Technical Bulletin #103, Moog Inc., New York.
20.
Martin
,
D. J.
, and
Burrows
,
C. R.
,
1976
, “
The Dynamic Characteristics of an Electrohydraulic Servovalve
,”
ASME J. Dyn. Syst., Meas., Control
,
98
, pp.
395
406
.
21.
“SAE Recommended Practice J1236 (R1995)—Cast Iron Sealing Rings (Metric),” in 2002 SAE Handbook: Volume 2—Parts and Components and On-Highway Vehicles (Part I), Society of Automotive Engineers, Warrendale, PA, pp. 29.246–29.248.
22.
Le
,
T. T.
,
Watton
,
J.
, and
Pham
,
D. T.
, 1997, “An Artificial Neural Network based Approach to Fault Diagnosis and Classification of Fluid Power Systems,” Proceedings of The Institute of Mechanical Engineers, Part I, Journal of Systems and Control Engineering, 211, pp. 307–317.
23.
Le
,
T. T.
,
Watton
,
J.
, and
Pham
,
D. T.
, 1998, “Fault Classification of Fluid Power Systems Using a Dynamics Feature Extraction Technique and Neural Networks,” Proceedings of The Institute of Mechanical Engineers, Part I, Journal of Systems and Control Engineering, 212, pp. 87–97.
24.
D’Azzo, J. J., and Houpis, C. H., 1998, Linear Control System Analysis and Design: Conventional and Modern, 3rd edition, McGraw-Hill, New York.
25.
Houpis, C. H., and Rasmussen, S. J., 1999, Quantitative Feedback Theory Fundamentals and Applications, Marcel Dekker, New York.
26.
Ogata, K., 1997, Modern Control Engineering, 3rd edition, Prentice-Hall, Upper Saddle River, NJ, Chap. 8.
27.
Crowther
,
W. J.
,
Edge
,
K. A.
,
Burrows
,
C. R.
,
Atkinson
,
R. M.
, and
Woollons
,
D. J.
, 1998, “Fault Diagnosis of a Hydraulic Actuator Circuit Using Neural Networks—An Output Vector Space Classification Approach,” Proceedings of The Institute of Mechanical Engineers, Part I, Journal of Systems and Control Engineering, 212, pp. 57–68.
You do not currently have access to this content.