Abstract
This paper considers the class of discrete-time jump linear systems with time-delay and polytopic uncertain parameters. The problems of delay-independent robust stability, stabilization and control are cast into the framework of linear matrix inequality (LMI) and thus solved by LMI Toolbox of Matlab. By extending the system state, the system with time-delay is converted into a higher dimension Markov jump system without time-delay, and thus can be handled as a standard jump linear system with uncertain parameters. Numerical examples are provided to show the usefulness of the theoretical results.
1.
Costa
, O. L. V.
, and Fragoso
, M. D.
, 1993
, “Stability Results for Discrete-Time Markovian Jump Linear Systems With Markovian Jumping Parameter Systems
,” J. Math. Anal. Appl.
, 179
, pp. 154
–178
.2.
Wonham, W. M., 1971, “Random Differential Equations in Control Theory,” Probabilistic Methods in Applied Mathematics, 2, A. T. Bharucha-reid, ed., Academic Press, New York.
3.
Sworder
, D. D.
, and Robinson
, V. G.
, 1974
, “Feedback Regulators for Jump Parameter Systems With State and Control Dependent Transition Rates
,” IEEE Trans. Autom. Control
, 18
, pp. 355
–359
.4.
Ji
, Y.
, and Chizeck
, H. J.
, 1988
, “Controllability, Observability, and Discrete-Time Markovian Jump Linear Quadratic Control
,” Int. J. Control
, 48
(2
), pp. 481
–498
.5.
Ji
, Y.
, Chizeck
, H. J.
, Feng
, X.
, and Loparo
, K. A.
, 1991
, “Stability and Control of Discrete-Time Jump Linear Systems
,” Control Theory and Advanced Technology
, 7
(2
), pp. 247
–270
.6.
de Souza
, C. E.
, and Fragoso
, M. D.
, 1993
, “H∞ Control for Linear Systems With Markovian Jumping Parameters
,” Control-Theory and Advanced Technology
, 9
(2
), pp. 457
–466
.7.
Mariton, M., 1990, Jump Linear Systems in Automatic Control, Marcel Dekker, New York.
8.
Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, SIAM.
9.
Boukas
, E. K.
, 1993
, “Control of System With Controlled Jump Markov Disturbances
,” Control Theory and Advanced Technology
, 9
(2
), pp. 577
–597
.10.
Boukas
, E. K.
, and Yang
, H.
, 1995
, “Stability of Discrete-Time Linear Systems With Markovian Jumping Parameters
,” Mathematics of Control, Signals and Systems
, 8
, pp. 390
–402
.11.
Costa
, O. L.
, and Boukas
, E. K.
, 1998
, “Necessary and Sufficient Condition for Robust Stability and Stabilizability of Continuous-Time Linear Systems With Markovian Jumps
,” J. Optim. Theory Appl.
, 99
(2
), pp. 75
–99
.12.
Shi
, P.
, and Boukas
, E. K.
, 1997
, “H∞ Control for Markovian Jumping Linear Systems With Parametric Uncertainty
,” J. Optim. Theory Appl.
, 95
(2
), pp. 359
–381
.13.
Jeung
, E. T.
, Kim
, J. H.
, and Park
, H. B.
, 1998
, “H∞-Output Feedback Controller Design for Linear Systems With Time-Varying Delayed State
,” IEEE Trans. Autom. Control
, 43
(7
), pp. 971
–974
.14.
Benjelloun
, K.
, and Boukas
, E. K.
, 1998
, “Mean Square Stochastic Stability of Linear Time-Delay System with Markovian Jumping Parameters
,” IEEE Trans. Autom. Control
, 43
(10
), pp. 1456
–1459
.15.
Benjelloun
, K.
, Boukas
, E. K.
, and Yang
, H.
, 1996
, “Robust Stabilizability of Uncertain Linear Time-Delay Systems With Markovian Jumping Parameters
,” ASME J. Dyn. Syst., Meas., Control
, 118
(4
), pp. 776
–783
.16.
Boukas
, E. K.
, and Liu
, Z. K.
, 2001
, “Robust H∞ of Discrete-Time Markovian Jump Linear Systems With Mode-Dependent Time-Delays
,” IEEE Trans. Autom. Control
, 46
, pp. 1918
–1924
.17.
Mahmoud
, M. S.
, and Al-Muthairi
, N. F.
, 1994
, “Design of Robust Controllers for Time-Delay Systems
,” IEEE Trans. Autom. Control
, 39
(5
), pp. 995
–999
.Copyright © 2003
by ASME
You do not currently have access to this content.