This paper presents the solution of output feedback H control problem for linear neutral systems with unknown constant multiple state delays in delay independent case, without any restrictions on plant matrices D12 and D21. First, some sufficient conditions for the solution of this problem are obtained in closed-loop system matrices in both linear matrix inequality (LMI) and algebraic Riccati inequality (ARI) forms, by standard Lyapunov-Krazovskii functional in delay independent multi-delay case. Because of the complexity of the solution of the compensator from these inequalities, equivalent sufficient conditions are derived for designing output feedback controller which stabilizes the closed-loop neutral system under consideration and guarantees an H-norm bound constraint on the disturbance attenuation. These conditions are of the form two ARIs and, for simplicity in computation equivalent LMIs are given. Finally, output feedback H controller design is achieved and the results are illustrated in some numerical examples.

1.
Hale, J. K., 1977, Functional Differential Equations, Springer-Verlag, New York.
2.
Malek-Zavarei, M., and Jamshidi, M., 1987, Time-Delay Systems: Analysis, Optimization and Applications, Systems and Control Series 9. North-Holland, Amsterdam.
3.
Byrnes
,
CP. I.
,
Spong
,
M. W.
, and
Tarn
,
T.
,
1984
, “
A Several Complex Variables Approach to Feedback Stabilization of Linear Neutral Delay-Differential Systems
,”
Math. Systems Theory
,
17
, pp.
97
133
.
4.
Hale, J. K., and Lunel, S. M. V., 1991, Introduction to Functional Differential Equations, App. Math. Sciences, 99, Springer-Verlag, New York.
5.
Kolmanovskii, V. B., and Nasov, V. R., 1986, Stability of Functional Differential Equations Systems: Analysis, Optimization and Applications, Academic Press, New York.
6.
Verriest, E. J., and Niculescu, S. I., 1997, “Delay-Independent Stability of Linear Neutral Systems: A Riccati Equation Approach,” Stability and Control of Time-Delay Systems, L. Dugard and E. I. Verriest, (pp. 93–100), Springer, New York.
7.
Mahmoud
,
M. S.
,
2000
, “
Robust H∞ Control of Linear Neutral Systems
,”
Automatica
,
36
, pp.
757
764
.
8.
Kolmanovskii
,
V. B.
,
Niculescu
,
S. I.
, and
Richard
,
J. P.
,
1999
, “
On the Liapunov-Krasovskii Functionals for Stability Analysis of Linear Delay Systems
,”
Int. J. Control
,
72
(
4
), pp.
374
384
.
9.
Lien
,
C. H.
,
Yu
,
K. W.
, and
Hsieh
,
J. G.
,
2000
, “
On the Liapunov-Krasovskii Functionals for Stability Analysis of Linear Delay Systems
,”
Int. J. Control
,
72
(
4
), pp.
374
384
.
10.
Niculescu
,
S. I.
,
2001
, “
On Delay-Dependent Stability Under Model Transformations of Some Neutral Linear Systems
,”
Int. J. Control
,
74
(
6
), pp.
609
617
.
11.
Fridman
,
E.
,
2001
, “
New Lyapunov-Krasovskii Functionals for Stability of Linear Retarded and Neutral Type Systems
,”
Syst. Control Lett.
,
43
, pp.
309
319
.
12.
Zhou
,
K.
, and
Khargonekar
,
P. P.
,
1988
, “
An Algebraic Riccati Equation Approach to H∞ Optimization
,”
Syst. Control Lett.
,
11
, pp.
85
91
.
13.
Doyle
,
J. C. K.
,
Glover
,
K.
,
Khargonekar
,
P.
, and
Francis
,
B.
,
1989
, “
State-Space Solutions to Standart H2 and H∞ Problems
,”
IEEE Trans. Autom. Control
,
AC-34
, pp.
831
847
.
14.
Iwasaki
,
T.
, and
Skelton
,
R. E.
,
1994
, “
All Controllers for General H∞ Control Problem: LMI Existence Conditions and State Space Formulas
,”
Automatica
,
8
, pp.
1307
1317
.
15.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
An Linear Matrix Inequality Approach to H∞ Control
,”
Int. J. Robust Nonlinear Control
,
4
, pp.
421
448
.
16.
Mahmoud, M. S., 2000, Robust Control and Filtering for Time-Delay Systems, Control Engineering Series, Marcel Dekker, Inc., New York.
17.
Choi
,
H. H.
, and
Chung
,
M. J.
,
1997
, “
An LMI Approach to H∞ Controller Design for Linear Time-Delay Systems
,”
Automatica
,
33
, pp.
737
739
.
18.
Fridman
,
E.
, and
Shaked
,
U.
,
2002
, “
A Descriptor System Approach to H∞ Control of Linear Time-Delay Systems
,”
IEEE Trans. Autom. Control
,
47
(
2
), pp.
253
270
.
19.
Sampei
,
M.
,
Mita
,
T.
, and
Nakamichi
,
M.
,
1990
, “
An Algebraic Approach to H∞ Output Feedback Control Problems
,”
Syst. Control Lett.
,
14
, pp.
13
24
.
20.
Boyd, S., el Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
21.
Bas¸er, U., 2002, “The H∞ Control Problem for Linear Neutral Systems With Multiple Delays,” IFAC World Congress (2002), Barcelona.
22.
Zhou, K., Doyle, J. C., and Glover, K., 1996, Robust and Optimal Control, Prentice Hall, New Jersey.
You do not currently have access to this content.