A new approximate model, which consists of a variable gain and a variable time-delay, is proposed to describe the hysteresis behavior of a piezoactuator. The variable gain is assumed to be a function of the magnitude of the input command, while the time-delay is assumed to be a function of the frequency of the input command. The ranges of these two variable parameters are determined through open loop tests. According to the proposed approximate model, a Smith predictor-based robust H controller is developed to achieve high-precision tracking control of a piezoactuator. Analytical simulation and experimental results on tracking several types of reference inputs demonstrate that the maximum tracking error can be reduced to be less than 2% of the traveling path by utilizing the proposed controller design.

1.
Moriyama
,
S.
,
Ushida
,
F.
, and
Seya
,
E.
,
1988
, “
Development of a Precision Diamond Turning Machine for Fabrication of Asymmetric Aspheric mirrors
,”
Opt. Eng. (Bellingham)
,
27
(
11
), pp.
1008
1012
.
2.
Stroscio, J., and Kaiser, W., 1993, Scanning Tunneling Microscopy, Academic Press, New York.
3.
Products for Micropositioning Catalog, 1990, Physik Instrumente, Waldronn, Germany.
4.
Furutani, K., Urushibata, M., and Mohr, N., 1998, “Improvement of Control Method for Piezoelectric Actuator by Combining Induced Charge Feedback with Inverse Transfer Function Compensation,” Proc. of 1998 IEEE Int. Conf. on Robotics and Automation, pp. 1504–1509.
5.
Newcomb
,
C.
, and
Flinn
,
I.
,
1982
, “
Improving the Linearity of Piezoelectric Ceramic Actuators
,”
Electron. Lett.
,
10
, pp.
442
444
.
6.
Kaizuka
,
H.
, and
Sui
,
B.
,
1988
, “
A Simple Way to Reduce Hysteresis and Creep When Using Piezoelectric Actuator
,”
Jpn. J. Appl. Phys.
,
27
(
5
), pp.
773
776
.
7.
Cruz-Hernandez, J. M., and Hayward, V., 1997, “On the Linear Compensation of Hysteresis,” IEEE Conf. on Decision and Control, 2, pp. 1956–1957.
8.
Okazaki
,
Y.
,
1990
, “
A Micro-positioning Tool Post Using a Piezoelectric Actuator for Diamond Turning Machines
,”
Precis. Eng.
,
12
(
3
), pp.
151
156
.
9.
Hong, T., and Chang, T., 1995, “Control of Nonlinear Piezoelectric Stack Using Adaptive Dither,” Proc. of 1995 American Control Conf., Part 1, 1, pp. 76–80.
10.
Croft
,
D.
, and
Devasia
,
S.
,
1998
, “
Hysteresis and Vibration Compensation for Piezoactuators
,”
J. Guid. Control Dyn.
,
21
, pp.
710
717
.
11.
Ge
,
P.
, and
Jouaneh
,
M.
,
1996
, “
Tracking Control of a Piezoceramic Actuator
,”
IEEE Trans. Control Syst. Technol.
,
4
, pp.
209
216
.
12.
Stepanenoko, Y., and Su, C.-Y., 1998, “Intelligent Control of Piezoelectric Actuators,” Proc. of IEEE Conf. on Decision and Control, 4, pp. 4234–4239.
13.
Mayergozy, I. D., 1991, Mathematical Models of Hysteresis, Spring-Verlag.
14.
Machi
,
J. W.
,
Nistri
,
P.
, and
Zecca
,
P.
,
1993
, “
Mathematical Models for Hysteresis
,”
SIAM Rev.
,
35
, pp.
94
123
.
15.
Ge
,
P.
, and
Jouaneh
,
M.
,
1995
, “
Modeling Hysteresis in Piezoceramic Actuators
,”
Precis. Eng.
,
17
(
3
), pp.
211
221
.
16.
Goldfarb
,
M.
, and
Celanovic
,
N.
,
1997
, “
Modeling Piezoelectric Stack Actuators for Control of Micromanipulation
,”
IEEE Control Syst. Mag.
,
17
(
3
), pp.
69
79
.
17.
Chonan
,
S.
,
Jiang
,
Z.
, and
Yamamoto
,
T.
,
1996
, “
Nonlinear Hysteresis Compensation of Piezoelectric Ceramic Actuators
,”
J. Intell. Mater. Syst. Struct.
, pp.
150
156
.
18.
Main
,
J. A.
, and
Garcia
,
E.
,
1997
, “
Piezoelectric Stack Actuators and Control System Design: Strategies and Pitfalls
,”
J. Guid. Control Dyn.
,
20
(
3
), pp.
479
485
.
19.
Chang
,
T.
, and
Sun
,
X.
,
2001
, “
Analysis and Control of Monolithic Piezoelectric Nano-actuator
,”
IEEE Trans. Control Syst. Technol.
,
9
(
1
), pp.
69
75
.
20.
Doyle, J. C., Francis, B. A., and Tannenbaum, A. R., 1992, Feedback Control Theory, Macmillan Pub., New York.
21.
Slotine, J. E., and Li, W., 1991, Applied Nonlinear Control, Prentice Hall, New York.
22.
Juang, J. N., 1994, Applied System Identification, Prentice Hall, New York.
23.
Chen, J. S., 2000, “Analysis of the Hysteresis Effects on Tracking Control of a Piezoactuator,” Master thesis, National Chung Cheng University, Taiwan.
24.
Green, M., and Limbeer, D. J. N., 1995, Linear Robust Control, Prentice Hall, New York.
25.
Zhou, K., Doyle, J. C., and Glover, K., 1996, Robust and Optimal Control, Prentice-Hall, New Jersey.
26.
Schneider
,
D. M.
,
1988
, “
Control of Processes with Time Delays
,”
IEEE Trans. Autom. Control
,
24
, pp.
186
191
.
27.
Smith, J., 1958, Feedback Control Systems, McGraw-Hill, New York.
28.
Kuo, B. C., 1995, Automatic Control Systems, Prentice Hall, New Jersey, pp. 776–779.
You do not currently have access to this content.