A template generation algorithm is presented in this paper based on interval analysis. The proposed algorithm makes use of vectorized evaluations of the angle-magnitude functions and adaptive subdivisions of the parameter intervals. The algorithm is applicable to any computer programmable transfer function and generates templates to a user-specified accuracy. It is shown through several examples that the proposed algorithm is more efficient than existing interval analysis based template generation algorithms.

1.
Horowitz, I. M., 1993, Quantitative Feedback Design Theory (QFT), QFT Publications, Boulder, CO.
2.
Boje
,
E.
,
2000
, “
Finding Nonconvex Hulls of QFT Templates
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
230
231
.
3.
Chen
,
W.
, and
Ballance
,
D. J.
,
1999
, “
Plant Template Generation for Uncertain Plants in QFT
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, pp.
359
364
.
4.
Lasky
,
T. A.
, and
Ravani
,
B.
,
1997
, “
Use of Convex Hulls for Plant Template Approximation in QFT Design
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
3
), pp.
598
600
.
5.
Nataraj
,
P. S. V.
, and
Sardar
,
G.
,
2000
, “
Template Generation for Continuous Transfer Functions Using Interval Analysis
,”
Automatica
,
36
, pp.
111
119
.
6.
Sardar, G., and Nataraj, P. S. V., 1997, “A Template Generation Algorithm for Non-Rational Transfer Functions in QFT Designs,” Proc. of 36th IEEE Conf. Decision and Control, San Diego, pp. 2684–2689.
7.
Moore, R. E., 1979, Methods and Applications of Interval Analysis, SIAM, Philadelphia.
8.
Rump, S. M., 1999, “INTLAB - Interval Laboratory,” Developments in Reliable Computing, T. Csendes, ed., Kluwer Academic Publishers.
9.
Rall, L. B., 1981, Automatic Differentiation, Techniques and Applications, Lecture Notes in Computer Science, No. 120, Springer-Verlag, Berlin.
10.
Kearfott
,
R. B.
,
1987
, “
Some Tests of Generalized Bisection
,”
ACM Transactions on Mathematical Software
,
13
(
3
), pp.
197
220
.
11.
Kearfott
,
R. B.
,
1987
, “
Abstract Generalized Bisection and a Cost Bound
,”
Math. Comput.
,
49
(
179
), pp.
187
202
.
12.
Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch., 1993, PASCAL-XSC Language Reference With Examples, Springer-Verlag, Berlin, Heidelberg.
13.
Rodrigues
,
J. M.
,
Chait
,
Y.
, and
Hollot
,
C. V.
,
1997
, “
An Efficient Algorithm for Computing QFT Bounds
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
3
), pp.
548
552
.
You do not currently have access to this content.