This paper presents position control of a moving platform using a hydraulic bridge circuit associated with electrorheological (ER) valves. Four cylindrical ER valves are designed and manufactured on the basis of electric field-dependent yield stress of an ER field, which is composed of chemically treated starch and silicone oil. The pressure drops of the ER valves are empirically identified with respect to the intensity of the electric field, and the hydraulic bridge circuit with four ER valves is constructed. The hydraulic cylinder system to be controlled by the ER valve bridge circuit is then incorporated with a moving platform of a cargo handling laboratory model. Subsequently, a neural network control scheme is formulated in order to control the position of the moving platform by activating ER valves of the cylinder system. The controller is experimentally realized and position tracking control results for desired trajectories of the moving platform are presented in the time domain.

1.
Watton, J., 1988, Fluid Power Systems, Prentice Hall, NJ.
2.
Lin
,
S. J.
, and
Akers
,
A.
,
1989
, “
A Dynamic Model of the Flapper-Nozzle Component of an Electrohydraulic Servo Valve
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
105
109
.
3.
Bullough
,
W. A.
,
1991
, “
Liquid State Force and Displacement Devices
,”
Mechatronics
,
1
(
1
), pp.
1
10
.
4.
Petek, N. K., Rimstadt, D. J., Lizal, M. B., and Weyenberg, T. R., 1995, “Demonstration of an Automotive Semi-Active Suspension Using Electrorheological Fluid,” SAE Paper, No. 950586.
5.
Morishita, S., and Mitsui, J., 1992, “An Electronically Controlled Engine Mount Using Electro-Rheological Fluid,” SAE Paper, No. 922290.
6.
Choi
,
S. B.
,
Cheong
,
C. C.
, and
Kim
,
G. W.
,
1997
, “
Feedback Control of Tension in a Moving Tape Using an ER Brake Actuator
,”
Mechatronics
,
7
(
1
), pp.
53
66
.
7.
Choi
,
S. B.
,
Cheong
,
C. C.
, and
Park
,
Y. K.
,
1996
, “
Active Vibration Control of Intelligent Composite Laminate Structures Incorporating an Electro-Rheological Fluid
,”
J. Intell. Mater. Syst. Struct.
,
7
, pp.
411
419
.
8.
Simmonds, A. J., 1991, “Electro-Rheological Valves in a Hydraulic Circuit,” IEE Proceeding-D, 138(4), pp. 400–404.
9.
Brooks
,
D. A.
,
1992
, “
Design and Development of Flow Based Electro-Rheological Devices
,”
Int. J. Mod. Phys. B
,
6
, pp.
2705
2730
.
10.
Nakano, M., and Yonekawa, T., 1994, “Pressure Response of ER Fluid in a Piston Cylinder-ER Valve System,” Proceedings of the 4th International Conference on Electrorheological Fluids, pp. 477–489.
11.
Whittle
,
M.
,
Firoozian
,
R.
, and
Bullough
,
W. A.
,
1994
, “
Decomposition of the Pressure in an ER Valve Control System
,”
J. Intell. Mater. Syst. Struct.
,
5
(
1
), pp.
105
111
.
12.
Lee, J. W., Choi, S. B., and Kim, K. S., 1999, “Automatic Cargo Handling System for Seaport,” Korea Patent, No. 0208916.
13.
Adriani
,
P. M.
, and
Gast
,
A. P.
,
1988
, “
A Microscopic Model of Electrorheology
,”
Phys. Fluids
,
31
(
10
), pp.
2757
2768
.
14.
Choi
,
S. B.
,
Choi
,
Y. T.
,
Chang
,
E. G.
,
Han
,
S. J.
, and
Kim
,
C. S.
,
1998
, “
Control Characteristics of a Continuously Variable ER Damper
,”
Mechatronics
,
8
(
2
), pp.
143
161
.
15.
Lee
,
H. S.
, and
Tomizuka
,
M.
,
1996
, “
Robust Motion Controller Design for High-Accuracy Positioning Systems
,”
IEEE Trans. Ind. Electron.
,
43
(
1
), pp.
48
55
.
16.
Levine, W. S., 1996, The Control Handbook, CRC Press.
17.
Miyamoto
,
H.
,
Kawato
,
M.
,
Setoyama
,
T.
, and
Suzuki
,
R.
,
1988
, “
Feedback-Error-Learning Neural Network for Trajectory Control of a Robotic Manipulator
,”
Neural Networks
,
11
, pp.
251
265
.
You do not currently have access to this content.