In this brief the dynamic behavior of a parametrically forced manipulator, or pendulum, system with PD control is examined. For an excitation of sufficient amplitude or frequency a Hopf bifurcation to a steady-state limit cycle is shown to result, appearing as a precursor to instability. The parameter space is mapped in order to illustrate regions where control failure will likely occur, even in the strongly damped case. For weakly damped systems, the Hopf bifurcation can additionally exhibit a dependence on initial conditions. The resulting case of competing point and periodic attractors is discussed.
Issue Section:
Technical Briefs
1.
Ravishankar
, A. S.
, and Ghosal
, A.
, 1999
, “Nonlinear Dynamics and Chaotic Motions in Feedback Controlled Two- and Three-Degree-of-Freedom Robots
,” Int. J. Robot. Res.
, 18
, No. 1
, pp. 93
–108
.2.
Lankalapalli, S., and Ghosal, A., 1996, “Possible Chaotic Motions in a Feedback Controlled 2R Robot,” Proceedings of the 1996 IEEE International Conference On Robotics and Automation, Minneapolis, Vol. 2, pp. 1241–1245.
3.
Mahout, V., Lopez, P., Carcasses, J. P., and Mira, C., 1993, “Complex Behaviors of a Two Revolute Joints Robot: Harmonic, Subharmonic, Higher Harmonic, Fractional Harmonic, Chaotic Responses,” IEEE International Conference On Systems, Man, and Cybernetics, Le Touquet, France, pp. 201–205.
4.
Spong, M. W., and Vidyasagar, M., 1989, Robot Dynamics and Control, Wiley, New York, NY.
5.
Arimoto, S., 1996, Control Theory of Nonlinear Systems: A Passivity Based and Circuit-Theoretical Approach, Oxford University Press.
6.
Kelly
, R.
, 1997
, “PD Control with Desired Gravity Compensation of Robotic Manipulators: A Review
,” Int. J. Robot. Res.
, 16
, No. 5
, pp. 660
–672
.7.
Takegaki
, M.
, and Arimoto
, S.
, 1981
, “A New Feedback Method for Dynamic Control of Manipulators
,” ASME J. Dyn. Syst., Meas., Control
, 103
, pp. 119
–125
.8.
Blizter
, L.
, 1965
, “Inverted Pendulum
,” Am. J. Phys.
, 33
, pp. 1076
–1078
.9.
Capecchi
, D.
, 1995
, “Geometric Aspects of the Parametrically Driven Pendulum
,” Nonlinear Dyn.
, 7
, pp. 231
–247
.10.
Leven
, R. W.
, and Koch
, B. P.
, 1981
, “Chaotic Behavior of a Parametrically Excited Damped Pendulum
,” Phys. Lett. A
, 86
, No. 2
, pp. 71
–74
.11.
McLaughlin
, J.
, 1981
, “Period Doubling Bifurcations and Chaotic Motion for a Parametrically Forced Pendulum
,” J. Stat. Phys.
, 24
, No. 2
, pp. 375
–388
.12.
Arimoto, S., 1989, “Control” Robotics Science, M. Brady ed., MIT Press, pp. 349–377.
13.
McLachlan, N. W., 1947, Theory and Application of Mathieu Functions, Oxford Press.
14.
Turyn
, L.
, 1993
, “The Damped Mathieu Equation
,” Q. Appl. Math.
, 51
, No. 2
, pp. 389
–398
.15.
Taylor
, J. H.
, and Narendra
, K.
, 1969
, “Stability Regions for the Damped Mathieu Equation
,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, 17
, No. 2
, pp. 343
–352
.16.
Gunderson
, H.
, Rigas
, H.
, and VanVleck
, F. S.
, 1974
, “A Technique for Determining Stability Regions for the Damped Mathieu Equation
,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
, 26
, No. 2
, pp. 345
–349
.17.
Leiber
, T.
, and Risken
, H.
, 1988
, “Stability of Parametrically Excited Dissipative Systems
,” Phys. Lett. A
, 129
, No. 4
, pp. 214
–218
.18.
Kuznetsov, Y., 1998, Elements of Applied Bifurcation Theory, Springer Verlag, pp. 86–103.
19.
Hsu
, C. S.
, 1975
, “Limit Cycle Oscillations of Parametrically Excited Second-Order Nonlinear Systems
,” ASME J. Appl. Mech.
, 42
, pp. 176
–182
.Copyright © 2002
by ASME
You do not currently have access to this content.