Hydraulic cylinders are commonly used and many works deal with modeling and control of such devices. This article deals with the stability properties of hydraulic cylinders drift in various situations. The study is based on a classic nonlinear model of these physical systems. The cases of system models without leakages and models with cylinder leakages or servovalve leakages are distinguished and lead to distinct behaviors. The stability properties are proven by various mathematical arguments such as first integrals, Lyapunov theorems, LASALLE invariance principle, BARBALAT’s lemma, and the center manifold theory.

1.
Merritt, H., 1967, Hydraulic Control System, Wiley, NY.
2.
Viersma, J., 1980, Analysis, Synthesis and Design of Hydraulic Servosystems and Pipelines, Elsevier, Amsterdam.
3.
Mc. Cloy, and Martin, H. K., 1980, Control of Fluid Power Analysis and Design, Wiley, New York.
4.
Watton, J., 1989, Fluid Power Systems, Prentice Hall, London.
5.
Lebrun, M., 1986, “Contribution a` une aide a` l’analyze dynamique et a` la conception de syste`mes e´lectrohydrauliques,” Univ C. Bernard, Lyon I, France, The`se d’e´tat (French).
6.
Piche´
,
R.
,
Pohjolainen
,
S.
, and
Virvalo
,
T.
,
1992
, “
Design of Robust Controllers for Position Servos Using H Theory
,”
Proc. Inst. Mech. Eng.
,
205
, pp.
299
306
.
7.
Mare´, J. C., 1993, “Contribution a` la mode´lisation, la simulation, l’identification et la commande d’actionneurs e´lectrohydrauliques,” Univ C. Bernard, Lyon I, France, The`se d’e´tat (French).
8.
Hahn, H., and Piepenbrink, A., and Leimbach, K. D., 1994, “Input/Output Linearization Control of an Electro Servo-Hydraulic Actuator,” Third IEEE Conference on Control Applications, Glasgow, pp. 995–1000.
9.
Richard, E., and Outbib, R., 1995, “Feedback Stabilization of an Electrohydraulic System,” Third ECC, Roma.
10.
Quintas
,
M.
, and
Richard
,
E.
, and
Scavarda
,
S.
,
1996
, “
Implicit NMon-Linear Robust Control for an Electrohydraulic System with Uncertainties
,”
Proc. Inst. Mech. Eng.
,
210
, pp.
103
111
.
11.
Alleyne, A., 1998, “A Systematic Approach to the Control of Electrohydraulic Servosystems,” Proc. A.C.C. Conference, Philadelphia, pp. 833–837.
12.
Richard, E., and Scavarda, S., and Thomasset, D., 1999, “P.R.C. mode´lisation et commande des syste´mes a` fluide sous pression,” Activity report “GDR Automatique CNRS” (French), May.
13.
Rodrigues Quintas, M., 1999, “Contribution a` la mode´lisation et a` la commande robuste des syste`mes e´lectrohydrauliques,” Institut National des Sciences Applique´es de Lyon, France, The`se (French).
14.
Kugi, A., 2000, Non-linear Control Based on Physical Models, Springer-Verlag, New York, Heidelberg, Berlin.
15.
Rouche, N., and Mawhin, J., 1973, E´quations diffe´rentielles ordinaires, Masson, Paris, Vol. I: The´orie ge´ne´rale.
16.
Khalil, H. K., 1992, Nonlinear Systems, Macmillan, New York.
17.
Landau, L., and Lifchitz, L., 1981, Me´canique, MIR, Moscow, Series Physique The´orique.
18.
Barbalat
,
I.
,
1959
, “
Syste`mes d’e´quations diffe´rentielles d’oscillations non line´aires
,”
Revue de Mathe´matiques pures et applique´es
,
4
, pp.
267
270
19.
Carr, J., 1981, Application of Center Manifold Theory, Springer-Verlag, New York, Heidelberg, Berlin.
20.
Wiggins, S., 1990, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag (series: “Texts in applied mathematics”), New York, Heidelberg, Berlin.
You do not currently have access to this content.