A new noniterative frequency domain parameter estimation technique is proposed. It is based on a weighted total least squares approach, starting from multiple input multiple output frequency response functions. One of the specific advantages of the technique lies in the very stable identification of the system poles as a function of the specified system order, leading to easy-to-interpret stabilization diagrams. This implies a potential for automating the method and to apply it to “difficult” estimation cases. Several real-life case studies are discussed, one related to holographic modal analysis in the medium frequency range, one to the modal testing of a fully trimmed vehicle.

1.
Pintelon
,
R.
,
Guillaume
,
P.
,
Rolain
,
Y.
,
Schoukens
,
J.
, and
Van Hamme
,
H.
,
1994
, “
Parametric identification of transfer functions in the frequency domain-a survey
,”
IEEE Trans. Autom. Control
,
39
, No.
11
, pp.
2245
2260
.
2.
Leuridan, J., 1984, “Some Direct Parameter Model Identification Methods Applicable for Multiple Input Modal Analysis,” PhD thesis, Univ. of Cincinnati (US).
3.
Maia, N., and Silva, J., 1997, Theoretical and Experimental Modal Analysis, Research Studies Press, Taunton, UK.
4.
Kailath, T., 1980, Linear Systems, Prentice-Hall, New Jersey.
5.
Van der Auweraer
,
H.
, and
Leuridan
,
J.
,
1987
, “
Multiple Input Orthogonal Polynomial Parameter Estimation
,”
Mechanical Systems and Signal Processing
,
1
, No.
3
, July pp.
259
272
.
6.
Bayard
,
D. S.
,
1994
, “
High-order multivariable transfer function curve fitting: algorithms, sparse matrix methods and experimental results
,”
Automatica
,
30
, No.
9
, pp.
1439
14444
.
7.
Overschee, P. van , and De Moor De, B. 1996, Subspace identification for linear systems: theory, implementation, applications, Kluwer Academic Publishers.
8.
Van Huffel, S., and Vandewalle, J., 1991, The total least squares problem: computational aspects and analysis. Frontiers in Applied Mathematics, Series, Vol. 9, SIAM, Philadelphia, Pennsylvania.
9.
Guillaume
,
P.
,
Schoukens
,
J.
,
Pintelon
,
R.
, and
Kollar
,
I.
,
1991
, “
Crest-factor minimization using nonlinear Chebyshev approximation methods
,”
IEEE Trans. Instrum. Meas.
,
40
, No. 6.
10.
Schoukens, J., Rolain, Y., Gustafsson, F., and Pintelon, R., 1998, “Fast calculation of least-squares estimates for system identification,” Internal note, no. 1998-1, Vrije Universiteit Brussel.
11.
Pintelon
,
R.
,
Guillaume
,
P.
,
Vandersteen
,
G.
, and
Polain
,
Y.
,
1998
, “
Analysis, Development and Applications of TLS Algorithms in Frequency-Domain System Identification
,”
SIAM J. Matrix Anal. Appl.
,
19
, No.
4
, pp.
983
1004
.
12.
Cooper, J., 1999, “On the Use of Stability Plots for Modal Parameter Identification,” Proc. 2-nd Int. Conference on Identification in Engineering Systems, Swansea, pp. 375–381.
13.
Van der Auweraer, H., Steinbichler, H., Haberstok, C., Freymann, R., Storer, D., and Linet, V., 2001, “Industrial applications of pulsed-laser espi vibration analysis,” Proc. IMAC 2001, Orlando (FL), pp. 490–496.
14.
Van der Auweraer, H., Dierckx, B., Haberstock, C., Freymann, R., and Vanlanduit, S., 1999, “Structural Modeling of Car Panels Using Holographic Modal Analysis,” SAE paper 1999-01-1849, Proc. SAE Noise and Vibration Conference, Traverse City (MI), May 17–20, 1999, pp. 1495–1506.
15.
Vanlanduit
,
S.
,
Guillaume
,
P.
, and
Schoukens
,
J.
,
1998
, “
Development of a data reduction procedure with noise extraction for high resolution optical measurements
,”
Proc. SPIE
,
3411
, pp.
357
365
.
16.
Lembregts
,
F.
,
Snoeys
,
R.
, and
Leuridan
,
J.
,
1987
, “
Application and Evaluation of Multiple Input Modal Parameter Estimation
,”
Int. Journal of Modal Analysis
,
2
, No.
1
, pp.
19
31
.
17.
Van der Auweraer, H., Leurs, W., Mas, P., and Hermans, L., 2000, “On the Problem of Obtaining Consistent Estimates from Multi-Patch Modal Tests,” Proc. ISMA 25, Leuven (B), Sept. 13–15, 2000, pp. 119–1126.
You do not currently have access to this content.