This paper discusses the advantages of using periodic excitation and of combining internal and external measurements in experimental robot identification. This discussion is based on the robot identification method developed by Swevers et al., a method that is recognized by industry as an effective means of robot identification that is frequently used, Hirzinger, G., Fischer, M., Brunner, B., Koeppe, R., Otter, M., Grebenstein, M., and Schafer, I, 1999, “Advances is Robotics: The DLR Experiment,” The International Journal of Robotics Research, Vol. 18, No. 11, pp. 1064–1087 [3]. Experimental results on a KUKA IR 361 show that the periodicity of the robot excitation is a key element of this method. Nonperiodic robot excitation complicates the signal processing preceding the parameter estimation, often yielding less accurate parameter estimates. An extension of this identification method combines internal and external measurements, Chenut, X., Samin, J. C., Swevers, J., and Ganseman, C., 2000, “Combining Internal and External robot Models for improved Model Parameter Estimation,” Mechanical Systems and Signal Processing. Vol. 14, No. 5, pp. 691–704 [4], yielding robot models that allow to accurately predict the actuator torques and the reaction forces/torques of the robot on its base plate, which are both important for the path planning. This paper presents and critically discusses the first experimental results obtained with this method.

1.
Swevers
,
J.
,
Ganseman
,
C.
,
De Schutter
,
J.
, and
Van Brussel
,
H.
,
1996
, “
Experimental robot identification using optimized periodic trajectories
,”
Mech. Syst. Signal Process.
,
10
, No.
5
, pp.
561
577
.
2.
Swevers
,
J.
,
Ganseman
,
C.
,
Bilgin
,
D.
,
De Schutter
,
J.
, and
Van Brussel
,
H.
,
1997
, “
Optimal robot excitation and identification
,”
IEEE Trans. Rob. Autom.
,
13
, No.
5
, pp.
730
740
.
3.
Hirzinger
,
G.
,
Fischer
,
M.
,
Brunner
,
B.
,
Koeppe
,
R.
,
Otter
,
M.
,
Grebenstein
,
M.
, and
Scha¨fer
,
I.
,
1999
, “
Advances in Robotics: The DLR Experience
,”
Int. J. Robot. Res.
,
18
, No.
11
, pp.
1064
1087
.
4.
Chenut
,
X.
,
Samin
,
J. C.
,
Swevers
,
J.
, and
Ganseman
,
C.
,
2000
, “
Combining internal and external robot models for improved model parameter estimation
,”
Mech. Syst. Signal Process.
,
14
, No.
5
, pp.
691
704
.
5.
Gautier, M., 1986, “Identification of robot dynamics,” Proc. IFAC Symposium on Theory of Robots, Vienna, pp. 351–356.
6.
Raucent, B., and Samin, J. C., 1993, “Modelling and identification of dynamic parameters of robot manipulators,” Robot Calibration, R. Bernhardt and S. Albright, eds., Chapman & Hall, London, pp. 197–232.
7.
Liu, G., Iagnemma, K., Dubowsky, S., and Morel, G., 1998, “A base force/torque sensor approach to robot manipulator inertial parameter estimation,” Proc. of the IEEE Int. Conf. on Robotics and Automation, Leuven, pp. 3316–3321.
8.
Maes
,
P.
,
Samin
,
J. C.
, and
Willems
,
P. Y.
,
1989
, “
Linearity of multibody systems with respect to barycentric parameters: dynamic and identification models obtained by symbolic generation
,”
Mechanics of Structures and Machines
,
17
, No.
2
, pp.
219
237
.
9.
Fisette
,
P.
,
Raucent
,
B.
, and
Samin
,
J. C.
,
1996
, “
Minimal dynamic characterization of tree-like multibody systems
,”
Nonlinear Dyn.
,
9
, pp.
165
184
.
10.
Armstrong
,
B.
,
1989
, “
On finding excitation trajectories for identification experiments involving systems with nonlinear dynamics
,”
Int. J. Robot. Res.
,
8
, No.
6
, pp.
28
48
.
11.
Gautier
,
M.
, and
Khalil
,
W.
,
1992
, “
Exciting trajectories for the identification of base inertial parameters of robots
,”
Int. J. Robot. Res.
,
10
, pp.
362
375
.
12.
Ljung, L., 1987, System identification, theory for the user, Prentice-Hall Englewood Cliffs, N.J.
13.
Wittenburg, J., 1977, Dynamics of Systems or Rigid Bodies, Teubner, Stuttgart.
14.
Ganseman, C., 1998, “Dynamic modeling and identification of mechanisms with application to industrial robots,” Ph.D. thesis, KULeuven, Leuven.
15.
Van De Poel, P., Witvrouw, W., Bruyninckx, H., and De Schutter, J., 1993, “An environment for developing and optimizing compliant robot motion tasks,” 6th Int. IEEE Conference on Advanced Robotics, Atlanta, pp. 112–126.
16.
Schoukens, J., and Pintelon, R., 1991, Identification of linear systems: a practical guideline to accurate modeling, Pergamon Press, Oxford.
17.
Swevers, J., Pieters, S., Naumer, B., Biber, E., and Verdonck, W., 2001, “Experimental robot load identification,” submitted to IEEE Trans. Rob. Autom.
18.
Corke
,
P. I.
,
1996
, “
In situ Measurement of Robot Motor Electrical Constants
,”
Robotica
,
14
, No.
4
, pp.
433
436
.
19.
Olsen
,
M. M.
, and
Petersen
,
H. G.
,
2001
, “
A new method for estimating parameters of a dynamic robot model
,”
IEEE Trans. Rob. Autom.
,
17
, No.
1
, pp.
95
100
.
You do not currently have access to this content.