Model-based monitoring systems based on state observer theory often have poor performance with respect to accuracy, bandwidth, reliability (false alarms), and robustness. The above limitations are closely related to the ill-conditioning factors such as transient characteristics due to unknown initial values and round-off errors, and steady-state accuracy due to plant perturbations and sensor bias. In this paper, by minimizing the effects of the ill-conditioning factors, a well-conditioned observer is proposed for the discrete-time systems. A performance index is determined to represent the quantitative effects of the ill-conditioning factors and two design methods are described for the well-conditioned observers. The estimation performance of the well-conditioned observers is verified in simulations where transient as well as steady-state error robustness to perturbations is shown to be better than or equal to Kalman filter performance depending on the nature of modeling errors. The estimation performance is also demonstrated on an experimental setup designed and built for this purpose.

1.
Sobel, K. M., Banda, S. S., and Shapiro, E. Y., 1988, “Robust Modalized Observer with Flight Control Application,” Proc. IEEE, CDC, pp. 1018–1019.
2.
Spurgeon
,
S. K.
,
1990
, “
Pole Placement Extensions for Multivariable Systems-A Survey
,”
Proc. IEEE, ACC
,
2
, pp.
1660
1665
.
3.
Battacharyya
,
S. P.
,
1976
, “
The Structure of Robust Observers
,”
IEEE Trans. Autom. Control
,
21
, pp.
581
588
.
4.
Djaferis
,
T. E.
,
1986
, “
Robust Observers For Systems with Parameters
,”
Syst. Control Lett.
,
7
, pp.
385
394
.
5.
Saif
,
M.
,
1998
, “
Robust discrete time observer with application to fault diagnosis
,”
IEE Proc. Control Theory and Applications
,
145
, No.
3
, pp.
353
357
.
6.
Stefani
,
R. T.
,
1982
, “
Reducing the Sensitivity to Parameter Variations of a Minimum-order Reduced-order Observer
,”
Int. J. of Control
,
35
, No.
6
, pp.
983
995
.
7.
Galimidi
,
A. R.
, and
Barmish
,
B. R.
,
1984
, “
Robustness of Luenberger Observers: Linear Systems Stabilized Via Nonlinear Control
,”
Proc. IEEE, ACC
,
2
, pp.
968
974
.
8.
Linder
,
S. P.
,
Shafai
,
B.
, and
Saif
,
M.
,
1998
, “
Estimating and accommodating unknown actuator faults with PI observers
,”
Proc. IEEE, CCA
,
98CH36104
, pp.
461
465
.
9.
Shafai
,
B.
, and
Carroll
,
R. L.
,
1985
, “
Design of Proportional-Integral Observer for Linear Time-Varying Multivariable Systems
,”
Proc. IEEE, CCA
, pp. 597–599.
10.
Huh
,
K.
, and
Stein
,
J. L.
,
1994
, “
A Quantitative Performance Index for Observer-Based Monitoring Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, No.
3
, pp.
487
497
.
11.
Huh
,
K.
, and
Stein
,
J. L.
,
1995
, “
Well-Conditioned Observer Design for Model-based Monitoring Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
117
, No.
4
, pp.
592
599
.
12.
Luenberger
,
D. G.
,
1966
, “
Observers for Multivariable systems
,”
IEEE Trans. Autom. Control
,
11
, pp.
190
197
.
13.
Wilkinson, J. H., 1965, The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.
14.
Noble, B., and Daniel, J. W., 1977, Applied Linear Algebra, Prentice-Hall, Englewood Cliffs.
15.
van der Sluis
,
A.
,
1970
, “
Stability of Solutions of Linear Algebraic Systems
,”
Numerische Mathematik
,
14
, pp.
246
251
.
16.
Chan
,
T. F.
, and
Foulser
,
D. E.
,
1988
, “
Effectively Well-Conditioned Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
,
9
, No.
6
, pp.
963
969
.
17.
Golob, G. H., and Van Loan, C. F., 1989, Matrix Computations, The Johns Hopkins University Press, Baltimore and London.
18.
Huh
,
K.
, and
Stein
,
J. L.
,
1997
, “
A Non-normality Measure of the Condition Number for Monitoring and Control
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, No.
2
, pp.
217
222
.
19.
Grewal, M. S., and Andrews, A. P., 1993, Kalman Filtering, Prentice Hall.
You do not currently have access to this content.