In this paper we develop a method for identifying SISO Wiener-type nonlinear systems, that is, systems consisting of a linear dynamic system followed by a static nonlinearity. Unlike previous techniques developed for Wiener system identification, our approach allows the identification of systems with nonlinearities that are known but not necessarily invertible, continuous, differentiable, or analytic.
Issue Section:
Technical Papers
1.
Ljung, Lennart, 1999, System Identification: Theory for the User, Prentice Hall Information and System Sciences Series. Prentice Hall, 2nd edition, Jan.
2.
Juang, Jer-Nan, 1999, Applied System Identification, Prentice Hall.
3.
Van Overschee, Peter and De Moor, Bart, 1996, Subspace Identification for Linear Systems: Theory, Implementation, Applications, Kluwer.
4.
Soderstrom, Torsten, and Stoica, Petre, 1989, System Identification, Prentice Hall.
5.
Ahmed-Zaid, F., Ioannou, P. A., and Polycarpou, M. M., 1993, “Identification and control of aircraft dynamics using radial basis function networks,” Second IEEE Conference on Control Applications, Vancouver, BC, Sept., pp. 567–572.
6.
Juditsky
1995
, “Nonlinear black-box models in system identification: Mathematical foundations
,” Automatica
, 31
, No. 12
, pp. 1725
–1750
.7.
Songwu
, Lu
, and Tamer
, Bas¸ar
, 1998
, “Robust nonlinear system identification using neural-network models
,” IEEE Trans. Neural Netw.
, 9
, No. 3
, May, pp. 407
–429
.8.
Chen
, S.
, Billings
, S. A.
, and Grant
, P. M.
, 1990
, “Non-linear system identification using neural networks
,” Int. J. Control
, 51
, No. 6
, pp. 1191
–1214
.9.
Chen
, S.
, Billings
, S. A.
, Cowan
, C. F. N.
, and Grant
, P. M.
, 1990
, “Non-linear systems identification using radial basis functions
,” Int. J. Syst. Sci.
, 21
, No. 12
, pp. 2513
–2539
.10.
Narendra
, Kumpati S.
, and Parthasarathy
, Kannan
, 1990
, “Identification and control of dynamical systems using neural networks
,” IEEE Trans. Neural Netw.
, 1
, No. 1
, pp. 4
–27
.11.
Chen
, S.
, and Billings
, S. A.
, 1992
, “Neural networks for nonlinear dynamic system modelling and identification
,” Int. J. Control
, 56
, No. 2
, pp. 319
–346
.12.
Brillinger
, D. R.
, 1970
, “The identification of polynomial systems by means of higher order spectra
,” J. Sound Vib.
, 12
, No. 3
, pp. 301
–313
.13.
Westwick
, D. T.
, and Kearney
, R. E.
, 1992
, “A new algorithm for the identification of multiple input Wiener systems
,” Biol. Cybern.
, 68
, pp. 75
–85
.14.
Wigren
, Torbjo¨rn
, 1994
, “Convergence analysis of recursive identification algorithms based on the Wiener model
,” IEEE Trans. Autom. Control
, 39
, No. 11
, pp. 2191
–2206
.15.
Greblicki
, Włodzimierz
, 1997
, “Nonparametric approach to Wiener system identification
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
, 44
, No. 6
, pp. 538
–545
.16.
Grazyna A. Pajunen, 1985, “Recursive identification of Wiener type nonlinear systems,” Proceedings of the 1985 American Control Conference, Vol. 3, Boston, MA, June, pp. 1365–1370.
17.
Hasiewicz
, Z.
, 1987
, “Identification of a linear system observed through zero-memory non-linearity
,” Int. J. Syst. Sci.
, 18
, No. 9
, pp. 1595
–1607
.18.
Bai
, Er-Wei
, 1998
, “An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems
,” Automatica
, 34
, No. 3
, pp. 333
–338
.19.
Greblicki
, Włodzimierz
, 1994
, “Nonparametric identification of Wiener systems by orthogonal series
,” IEEE Trans. Autom. Control
, 39
, No. 10
, pp. 2077
–2086
.20.
Chen
, C. H.
, and Fassois
, S. D.
, 1992
, “Maximum likelihood identification of stochastic Wiener-Hammerstein-type non-linear systems
,” Mech. Syst. Signal Process.
, 6
, No. 2
, pp. 135
–153
.21.
Greblicki
, Włodzimierz
, 1992
, “Nonparametric identification of Wiener systems
,” IEEE Trans. Inf. Theory
, 38
, No. 5
, pp. 1487
–1493
.22.
Lovera
, Marco
, Gustafsson
, Tony
, and Verhaegen
, Michel
, 2000
, “Recursive subspace identification of linear and non-linear Wiener state-space models
,” Automatica
, 36
, pp. 1639
–1650
.23.
Westwick
, David
, and Verhaegen
, Michel
, 1996
, “Identifying MIMO Wiener systems using subspace model identification methods
,” Signal Process.
, 52
, pp. 235
–258
.24.
Emara-Shabaik
, Hosam E.
, Moustafa
, Kamal A. F.
, and Talaq
, Jaleel H. S.
, 1995
, “On identification of parallel block-cascade nonlinear models
,” Int. J. Syst. Sci.
, 26
, No. 7
, pp. 1429
–1438
.25.
Sjo¨berg
1995
, “Nonlinear black-box modeling in system identification: A unified overview
,” Automatica
, 31
, No. 12
, pp. 1691
–1724
.26.
Chen, C.-H. and Fassois S. D., 1997, “On the estimation of stochastic Wiener-Hammerstein-type systems with non-smooth non-linearity,” Proceedings of the 1997 American Control Conference, Albuquerque, NM.
27.
Hunter
, I. W.
, and Korenberg
, M. J.
, 1986
, “The identification of nonlinear biological systems: Wiener and Hammerstein cascade models
,” Biol. Cybern.
, 55
, pp. 135
–144
.28.
Korenberg
, M. J.
, and Hunter
, I. W.
, 1986
, “The identification of nonlinear biological systems: LNL cascade models
,” Biol. Cybern.
, 55
, pp. 125
–134
.29.
Wang, LeYi, Kolmanovsky, Ilya, and Sun, Jing, 2000, “On-line identification and adaption of lnt models for improved emission control in lean burn automotive engines,” Proceedings of the American Control Conference, Chicago IL, June, pp. 1006–1010.
30.
Bayard, David S. and Eslami Mansour, 1984, “Parameter identification of linear systems using nonlinear noninvertible measurements,” Proceedings of the 23rd Conference on Decision and Control, IEEE, Dec., pp. 348–352.
Copyright © 2001
by ASME
You do not currently have access to this content.