This paper presents a new implementation of indirect model reference adaptive (MRA) control scheme for positioning of hydraulic actuators that operate by low-cost proportional valves. A proper linear discrete-time plant model is used which has dead-time and no zeros, eliminating the possibility of unstable pole-zero cancellation. The robustness of the parameter adaptation is achieved by employing the recursive least-squares algorithm in combination with a dead-zone in the adaptive law. It is shown that while the controller is adequate for hydraulic valves with linear flow characteristics, it exhibits low performance in the presence of deadband and nonlinear orifice opening characteristics of low-cost proportional valves. The linear plant model is therefore augmented by adding a static nonlinearity. The resulting nonlinear MRA controller is shown to have improved performance over its linear counterpart. Step-by-step experiments are presented to confirm the effectiveness and performance improvement of the proposed method.

1.
Yun
,
J. S.
, and
Cho
,
H. S.
,
1991
, “
Application of an Adaptive Model Following Control Technique to a Hydraulic Servo System Subjected to Unknown Disturbances
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
479
86
.
2.
Plummer
,
A. R.
, and
Vaughan
,
N. D.
,
1996
, “
Robust Adaptive Control for Hydraulic Servosystems
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
237
244
.
3.
Lu, J., and Yahagi, T., 1993, “New Design Method for Model Reference Adaptive Control for Nonminimum Phase Discrete-Time Systems with Disturbances,” Proc. IEE, Part-D, Vol. 140, pp. 34–40.
4.
Bobrow
,
J. E.
, and
Lum
,
K.
,
1996
, “
Adaptive, High Bandwidth Control of a Hydraulic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
714
720
.
5.
Hori
,
N.
,
Pannala
,
A. S.
,
Ukrainetz
,
P. R.
, and
Nikiforuk
,
P. N.
,
1989
, “
Design of an Electrohydraulic Positioning System Using a Novel Model Reference Control Scheme
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
292
298
.
6.
Va¨ha¨, P., 1988, “Application of Parameter Adaptive Approach to Servo Control of a Hydraulic Manipulator,” Acta Polytechnica Scandinavia, Mathematics and computer science series No. 51, Helsinki, 1988.
7.
Lawrence, P. D., Sassani, F., Sauder, B., Sepehri, N., Wallersteiner, U., and Wilson, J., 1993, “Computer-Assisted Control of Excavator-Based Machines,” Int. Off-Highway Powerplant Congress & Exposition, Milwaukee, WI, SAE Technical Paper No. 932486.
8.
Sepehri
,
N.
,
Lawrence
,
P. D.
,
Sassani
,
F.
, and
Frenette
,
R.
,
1994
, “
Resolved-Mode Teleoperated Control of Heavy-Duty Hydraulic Machines
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
232
240
.
9.
Ziaei
,
K.
, and
Sepehri
,
N.
,
2000
, “
Modeling and Identification of Electrohydraulic Servo
,”
Journal of Mechatronics
,
10
, pp.
761
772
.
10.
Yahagi
,
T.
, and
Lu
,
J.
,
1993
, “
On Self-Tuning Control of Nonminimum Phase Discrete-Time Systems Using Approximate Inverse Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
115
, pp.
12
18
.
11.
Fu
,
Y.
, and
Dumont
,
G. A.
,
1989
, “
Choice of Sampling to Ensure Minimum-Phase Behavior
,”
IEEE Trans. Autom. Control
,
34
, pp.
560
563
.
12.
Finney, D., and Heck, B. S., 1995, “Simplified Output Control Via Parallel Compensation,” Proc. ACC, Seattle, Washington, pp. 3478–3482.
13.
Astro¨m
,
K. J.
,
Hagander
,
P.
, and
Sternby
,
J.
,
1984
, “
Zeros of Sampled Systems
,”
Automatica
,
20
, pp.
31
38
.
14.
Praly, S., Hung, T., and Rhode, D. S., 1985, “Towards a Direct Adaptive Scheme for a Discrete-Time Control of a Minimum Phase Continuous-Time System,” Proc. IEEE Conference on Decision and Control, Ft. Lauderdale, Florida, pp. 1188–1191.
15.
Iannou, P. A., and Sun, J., 1996, Robust Adaptive Control, Prentice-Hall, Upper Saddle River, NJ.
16.
Goodwin
,
G. C.
,
Lozano-Leal
,
R.
,
Mayne
,
D. Q.
, and
Middleton
,
R. H.
,
1986
, “
Rapprochement Between Continuous and Discrete Model Reference Adaptive Control
,”
Automatica
,
22
, pp.
199
207
.
17.
Hori, N., Ukrainetz, P. R., Nikiforuk, P. N., and Bitner, D. V., 1988, “Robust Discrete-time Adaptive Control of an Electrohydraulic Servo Actuator,” Proc. 8th. International Symposium on Fluid Power, Birmingham, U.K., pp. 495–514.
18.
Tanaka, K., Kurigami, M., Zhao, G., Sakamoto, M., and Shimizu, A., 1996, “Multi Rate MRAC Using Delta-Operator for Electro-Pneumatic Servo System,” Proc. 35th Conference on Decision and Control, Kobe, Japan, pp. 39–44.
19.
Ziaei, K., 1998, “Development of a Nonlinear Adaptive Control Scheme for Hydraulic Actuators,” M.Sc. thesis, Department of Mechanical and Industrial Engineering. The University of Manitoba, Winnipeg, Manitoba, Canada.
20.
Sadegh
,
N.
, and
Horowitz
,
R.
,
1988
, “
A robust Discrete-time Adaptive Servo
,”
ASME J. Dyn. Syst., Meas., Control
,
110
, pp.
189
196
.
21.
Astro¨m, K. J., and Wittenmark, B., 1989, Adaptive Control, Addison-Wesley, Reading, MA.
22.
Goodwin, G. C., and Sin, K. S., 1984, Adaptive Filtering Prediction and Control, Prentice-Hall PTR, Englewood Cliffs, NJ.
23.
Kung, M. C., and Womack, B. F., 1989, “Discrete-time Adaptive Control of Linear Dynamic Systems With a Two-Segment Piecewise-Linear Asymmetric Nonlinearity,” Proc. ACC, San Francisco, CA, pp. 570–572.
24.
Isermann, R., Lachmann, K. H., and Matko, D., 1992, Adaptive Control Systems, Prentice-Hall International, U.K.
25.
Tomizuka
,
M.
,
Horowitz
,
R.
,
Anwar
,
G.
, and
Jia
,
Y. L.
,
1988
, “
Implementation of Adaptive Techniques for Motion Control of Robotic Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
110
, pp.
62
69
.
You do not currently have access to this content.