The paper considers the minimization of the l-induced norm of the closed loop in linear periodically time varying (LPTV) systems when state information is available for feedback. A state-space approach is taken and concepts of viability theory and controlled invariance are utilized. It is shown that a memoryless periodically varying nonlinear controller can be constructed to achieve near-optimal performance. The construction involves the solution of several finite linear programs and generalizes to the periodic case earlier work on linear time-invariant systems (LTI).

1.
Diaz-Bobillo
,
I. J.
, and
Dahleh
,
M. A.
,
1993
, “
Minimization of the maximum peak-to-peak gain: The general multiblock problem
,”
IEEE Trans. Autom. Control
,
AC-38
, No.
10
, pp.
1459
1482
.
2.
Dahleh
,
M. A.
,
Voulgaris
,
P. G.
, and
Valavani
,
L. S.
,
1992
, “
Optimal and robust controllers for periodic and multirate systems
,”
IEEE Trans. Autom. Control
,
AC-37
, No.
1
, pp.
90
99
.
3.
Diaz-Bobillo, I. J., and Dahleh, M. A., 1992, “State feedback l1-optimal controllers can be dynamic,” Systems & Control Letters, 19, No. 2.
4.
Shamma
,
J. S.
,
1993
, “
Nonlinear state feedback for l1 optimal control
,”
Syst. Control Lett.
,
21
, pp.
265
270
.
5.
Shamma, J. S., “Optimization of the l∞-induced norm under full state feedback,” To appear, IEEE Transactions on Automatic Control, a summary in Proceedings of the 33rd IEEE Conference on Decision and Control, Dec. 1994.
6.
Aubin, J. P., 1991, Viability Theory, Birkha¨user, Boston.
7.
Aubin, J. P., and Cellina, A., 1989, Differential Inclusions. Springer-Verlag, New York.
8.
Frankowska
,
H.
, and
Quincampoix
,
M.
,
1991
, “
Viability kernels of differential inclusions with constraints: Algorithm and applications
,”
Journal of Mathematical Systems, Estimation, and Control
,
1
, No.
1
, pp.
371
388
.
9.
Quincampoix, M., 1993, “An algorithm for invariance kernels of differential inclusions,” A. B. Kurzhanski and V. M. Veliov, ed, Set-Valued Analysis and Differential Inclusions, Birkha¨user, Boston, pp. 171–183.
10.
Quincampoix
,
M.
, and
Saint-Pierre
,
P.
,
1995
, “
An algorithm for viability kernels in Holderian case: Approximation by discrete dynamical systems
,”
Journal of Mathematical Systems, Estimation, and Control
,
5
, No.
1
, pp.
1
13
.
11.
Blanchini
,
F.
,
1999
, “
Set invariance in control
,”
Automatica
,
35
, pp.
1747
1767
.
12.
Chapellat, H., Dahleh, M., and Bhattacharyya, S. P., “Optimal Disturbance Rejection for Periodic Systems,” Technical report No. 89-019, Texas A and M University, College Station, TX.
13.
Stoorvogel
,
A. A.
,
1995
, “
Nonlinear L 1 optimal controllers for linear systems
,”
IEEE Trans. Autom. Control
,
AC-40
, No.
4
, pp.
694
696
.
14.
Bertsekas
,
D. P.
, and
Rhodes
,
I. B.
,
1971
, “
On the minimax reachability of target sets and target tubes
,”
Automatica
,
7
, pp.
233
247
.
15.
Aubin, J. P., and Frankowska, H., 1990, Set-Valued Analysis, Birkha¨user, Boston.
You do not currently have access to this content.