This paper sets forth general conditions on the existence, boundedness, and proper gains of a control for stabilizing a nonlinear plant state trajectory to a sliding manifold denoted by S contained in the state space as characterized by a smooth quadratic Lyapunov function, V. To state such conditions we define a time-varying (possibly discontinuous in time) state-dependent decision manifold by considering the time-derivative of the quadratic Lyapunov function. The decision manifold disconnects the control space. At each instant of time, stability is achieved by choosing a control in an appropriate half space defined by the decision manifold so that the derivative of the Lyapunov function is negative definite. If the decision manifold moves continuously, then there is no need for a discontinuous (classical VSC) controller unless robustness in the presence of matched disturbances is desired. If the decision manifold is discontinuous, then the need for a discontinuous control is clear. The formulation unifies the various VSC control strategies found in the literature under a single umbrella and suggests new structures. The formulation also provides a simple geometric understanding of the effect of norm bounded but not necessarily matched disturbances and parameter variations on the system. Two examples illustrate the design aspects of the formulation. [S0022-0434(00)02904-X]

1.
Filippov
,
A. F.
,
1964
, “
Differential equations with discontinuous right hand side
,”
Am. Math. Soc. Trans.
,
42
, No.
2
, pp.
191
231
.
2.
Emelyanov, S. V., 1959, “Application of nonlinear correcting networks of the ‘Switch’ type for improving performance of second-order automatic control system,” Automation and Remote Control, No. 7, pp. 867–883.
3.
Emelyanov, S. V., 1967, Variable Structure Control Systems, Nauka, Moscow.
4.
Utkin, V. I., 1978, Sliding Modes and Their Application in Variable Structure Control, Mir, Moscow.
5.
DeCarlo
,
R. A.
,
Zak
,
S. H.
, and
Matthews
,
G. P.
,
1988
, “
Variable Structure Control of Nonlinear Multivariable Systems: A Tutorial
,”
Proc. IEEE
,
76
, No.
3
, pp.
212
232
.
6.
Utkin
,
V. I.
,
1977
, “
Variable Structure Systems with Sliding Modes
,”
IEEE Trans. Autom. Control
,
AC-22
, No.
2
, pp.
212
222
.
7.
Filippov, A. F., 1988, “Differential Equations with Discontinuous Right Hand Sides,” Kluwer Academic Publishers, Boston, MA.
8.
DeCarlo, R., Zak, S., and Drakunov, S., 1996, “Variable Structure Sliding Mode Controller Design,” The Control Handbook, William Levine, ed., CRC, Boca Raton, FL.
9.
Matthews
,
G.
, and
DeCarlo
,
R.
,
1988
, “
Decentralized Tracking for a Class of Interconnected Nonlinear Systems Using Variable Structure Control
,”
Automatica
,
24
, No.
2
, Mar., pp.
187
193
.
10.
Su
,
W.
,
Drakunov
,
S.
, and
Ozguner
,
U.
,
1996
, “
Constructing discontinuity surfaces for variable structure systems—A Lyapunov approach
,”
Automatica
,
32
, No.
6
,June, pp.
925
928
.
11.
Sira-Ramirez
,
H.
,
1992
, “
On the Sliding Mode Control of Nonlinear Systems
,”
Syst. Control Lett.
,
19
, pp.
303
312
.
12.
Levant
,
A.
,
1993
, “
Sliding order and sliding accuracy in sliding mode control
,”
Int. J. Control
,
58
, pp.
1247
1263
.
13.
Drakunov, Sergey, and DeCarlo, Ray, 1995, “Sliding Mode Control Design for Automated Steering via Lyapunov Approach,” Proceedings of the 1995 IEEE Conference on Decision and Control, New Orleans, LA, Dec.
14.
Rundell
,
A.
,
DeCarlo
,
R.
, and
Drakunov
,
S.
,
1996
, “
A Sliding Mode Observer and Controller for Stabilization of Rotational Motion of a Vertical Shaft Magnetic Bearing
,”
IEEE Trans. Control Syst. Technol.
,
4
, No.
5
, Sept., pp.
598
608
.
15.
Drakunov
,
S.
,
Hanchin
,
G.
,
Ozguner
,
U.
, and
Su
,
W.
,
1997
, “
Nonlinear Control of a Rodless Pneumatic Servoactuator or Sliding Modes vs. Coulomb Friction
,”
Automatica
,
33
, No.
7
, July, pp.
1401
1408
.
16.
Drakunov
,
S.
,
Ozguner
,
U.
,
Dix
,
P.
, and
Ashrafi
,
B.
,
1995
, “
ABS Control Using Optimum Search via Sliding Modes
,”
IEEE Trans. Control Syst. Technol.
,
3
, No.
1
, Mar., pp.
79
85
.
17.
Utkin, V. I., 1992, Sliding Modes in Control and Optimization, Springer-Verlag, Berlin.
18.
Bartolini, G., Ferrara, A., Punta, E., and Usai, E., 1997, “A combined first and second order sliding mode approach for hybrid control of constrained manipulators,” Proceedings of the 36th CDC, San Diego, CA, pp. 949–956.
19.
Bartolini, G., Ferrara, A., and Punta, E., 1998, “Tracking control of manipulators via second order sliding mode,” Proceedings of the MTNS-98 Symposium, Padova, Italy, July, pp. 983–986.
20.
Drakunov
,
S. V.
, and
Utkin
,
V. I.
,
1992
, “
Sliding Mode Control in Dynamic Systems
,”
Int. J. Control
,
55
, No.
4
, pp.
1029
1037
.
21.
Brewer
,
John W.
,
1978
, “
Kronecker Products and Matrix Calculus in System Theory
,”
IEEE Trans. Circuits Syst.
,
CAS-25
, No.
9
, Sept. pp.
772
781
.
22.
Corless
,
M. J.
, and
Leitmann
,
G.
,
1981
, “
Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems
,”
IEEE Trans. Autom. Control
,
AC-26
, No.
5
, pp.
1139
1144
.
23.
Baida, S. V., and Izosimov, D. B., 1986, “Simplex Algorithm for Sliding Mode Design,” Autom. Remote Control (Engl. Transl.).
24.
Slotine, J-J. E., and Li, W., 1991, Applied Nonlinear Control, Prentice Hall, Upper Saddle River, NJ.
25.
Klema
,
V. C.
, and
Laub
,
A. J.
,
1980
, “
The singular value decomposition: Its computation and some applications
,”
IEEE Trans. Electromagn. Compat.
,
AC-25
, No.
2
, pp.
164
176
.
You do not currently have access to this content.