In this paper, a new modeling method is developed for analyzing the dynamic behavior of a system consisting of a rigid robotic manipulator and a flexible sheet metal payload. The component mode synthesis method is applied to reduce the degrees of freedom of the payload and to model the interfaces between the robot gripper and the payload. Using nonlinear compatibility functions, the method is modified to synthesize the dynamics of the entire robot-payload system. Exact models are developed capable of describing both large and small rigid-body motions. A modular form is derived and the coupling dynamics is formulated in a computationally efficient manner. Numerical examples are presented to demonstrate the effectiveness of the modeling method. [S0022-0434(00)01102-3]

1.
Vukasovic
,
N.
,
Celigueta
,
J. T.
,
Garcia de Jalon
,
J.
, and
Bayo
,
E.
,
1993
, “
Flexible Multibody Dynamics Based on a Fully Cartesian System of Support Coordinates
,”
ASME J. Mech. Des.
,
115
, pp.
294
299
.
2.
Yuen, K.-M., and Bone, G. M., 1996, “Robotic Assembly of Flexible Sheet Metal Parts,” Proc. IEEE International Conference on Robotics and Automation, Minneapolis, MN, pp. 1511–1516.
3.
Yukawa, T., Uchiyama, M., and Inooka, H., 1995. “Cooperative Control of a Vibrating Flexible Object by a Rigid Dual-Arm Robot,” Proc. IEEE International Conference on Robotics and Automation, Nagoya, Japan, pp. 1820–1826.
4.
Cuadrado
,
J.
,
Cardenal
,
J.
, and
Garcia de Jalon
,
J.
,
1996
, “
Flexible Mechanisms Through Natural Coordinates and Component Synthesis: An Approach Fully Compatible with the Rigid Case
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
3535
3551
.
5.
Ing, J. G.-L., 1994, “Robotic Fixtureless Assembly of Sheet Metal Parts Using Finite Element Models,” M. A. Sc. thesis, Department of Mechanical and Industrial Engineering, University of Toronto, Canada.
6.
Book
,
W. J.
,
1984
, “
Recursive Lagrangian Dynamics of Flexible Manipulator Arms
,”
Int. J. Robot. Res.
,
3
, No.
3
, pp.
87
101
.
7.
Sunada
,
W. H.
, and
Dubowsky
,
S.
,
1983
, “
On the Dynamic Analysis and Behavior of Industrial Robotic Manipulators With Elastic Members
,”
ASME. J. Mech. Tran. Autom. Des.
,
105
, pp.
42
51
.
8.
Spanos
,
J. T.
, and
Tsuha
,
W. S.
,
1991
, “
Selection of Component Modes for Flexible Multibody Simulation
,”
J. Guid. Control. Dyn.
,
14
, No.
2
, pp.
278
286
.
9.
Moon
,
J. D.
, and
Cho
,
D. W.
,
1992
, “
A Conponent Mode Synthesis Applied to Mechanisms for an Investigation of Vibration
,”
J. Sound Vib.
,
157
, No.
1
, pp.
67
79
.
10.
Subbiah
,
M.
,
Sharan
,
A. M.
, and
Jain
,
J.
,
1988
, “
A Study of the Dynamic Condensation Techniques for the Machine Tools and Robotic Manipulators
,”
Mech. Mach. Theory
,
23
, No.
1
, pp.
63
69
.
11.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
, No.
4
, pp.
678
685
.
12.
Craig
,
R. R.
, and
Chang
,
C.-J.
,
1976
, “
Free-Interface Methods of Substructure Coupling for Dynamic Analysis
,”
AIAA J.
,
14
, No.
11
, pp.
1633
1635
.
13.
Smet
,
M. D.
,
Liefooghe
,
C.
,
Sas
,
P.
, and
Snoeys
,
R.
,
1989
, “
Dynamic Analysis of Flexible Structures Using Component Mode Synthesis
,”
ASME J. Appl. Mech.
,
56
, pp.
874
880
.
14.
Craig
,
R. R.
, and
Bampton
,
M. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
, No.
7
, pp.
1313
1319
.
15.
Spong, M. W., and Vidyasagar, M., 1989, Robot Dynamics and Control, Wiley, New York.
16.
Shabana, A. A., 1989, Dynamics of Multibody Systems, Wiley, New York.
You do not currently have access to this content.