A receding time horizon linear quadratic optimal control approach is formulated for multi-axis contour tracking problem. The approach employs a performance index with fixed weights on quadratic contouring error, tracking error, and control input over a future finite horizon. The problem is then cast into a standard receding horizon LQ problem with time varying weighting matrices, which are functions of the future contour trajectory within the horizon. The formulation thus leads to a solution of time varying state feedback and finite preview gains. Stability is proven for the linear trajectory case. Experimental and simulated results for an X-Y motion control problem are presented, which demonstrate the effectiveness of the control scheme and the effects of the key controller design parameters. [S0022-0434(00)01202-8]

1.
Poo
,
N.
, and
Bollinger
,
J. G.
,
1972
, “
Dynamic Errors in Type 1 Contouring Systems
,”
IEEE Trans. Ind. Appl.
,
IA-8
, No.
4
, pp.
477
484
, July.
2.
Koren
,
Y.
,
1980
, “
Cross-Coupled Biaxial Computer Control for Manufacturing Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
102
, pp.
265
272
.
3.
Kulkarni
,
P. K.
, and
Srinivasan
,
K.
,
1989
, “
Optimal Contouring Control of Multi-Axial Feed Drive Servomechanisms
,”
ASME J. Eng. Ind.
,
111
, pp.
140
148
.
4.
Srinivasan
,
K.
, and
Kulkarni
,
P. K.
,
1990
, “
Cross-Coupled Control of Biaxial Feed Drive Servomechanisms
,”
ASME J. Dyn. Syst., Meas., Control
,
112
, pp.
225
232
.
5.
Koren
,
Y.
, and
Lo
,
C. C.
,
1991
, “
Variable-Gain Cross-Coupling Controller for Contouring
,”
Ann. CIRP
,
40
, pp.
371
374
.
6.
Chiu, G. T-C., and Tomizuka, M., 1995, “Contouring Control of Machine Tool Feed Drive Systems: a Task Coordinate Frame Approach,” Dynamic System and Control, the Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, DSC-Vol. 57-2, pp. 503–510.
7.
Chiu
,
T-C.
, and
Tomizuka
,
M.
,
1998
, “
Coordinated Position Control of Multi-Axis Mechanical Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
110
, pp.
389
393
.
8.
Yen, J,-Y., Ho, H.-C., and Lu, S.-S., 1998, “Decoupled Path-Following ontrol Algorithm Based Upon the Decomposed Trajectory Error,” Proceedings of the 37th IEEE—Conference on Decision and Control, pp. 3189–3194, Tampa, FL.
9.
Lo
,
C.-C.
, and
Chung
,
C.-Y.
,
1999
, “
Tangential-Contouring Controller for Biaxial Motion Control
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, pp.
126
129
.
10.
Tomizuka
,
M.
, and
Whitney
,
D. E.
,
1975
, “
Optimal Discrete Finite Preview Problems (Why and How Is Future Information Important?)
,”
ASME J. Dyn. Syst., Meas., Control
,
97
, pp.
319
325
.
11.
Tomizuka
,
M.
, and
Rothenthal
,
D. E.
,
1979
, “
On the Optimal Digital State Vector Feedback Controller with Integral And Preview Actions
,”
ASME J. Dyn. Syst., Meas., Control
,
101
, No.
2
, pp.
172
178
.
12.
Tomizuka
,
M.
,
Dornfeld
,
D.
,
Bian
,
X.-Q.
, and
Cai
,
H.-C.
,
1980
, “
Application of Microcomputers to Automated Weld Quality Control
,”
ASME J. Dyn. Syst., Meas., Control
,
102
, No.
2
, pp.
62
68
.
13.
Tsao
,
T.-C.
,
1994
, “
Optimal Feed-Forward Digital Tracking Controller Design
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
583
592
.
14.
McNab, R. J., and Tsao, T.-C., 1994, “Multi-Axis Contour Tracking: A Receding Horizon Linear Quadratic Optimal Control Approach,” ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, DSC-Vol. 55-2, pp. 895–902.
15.
Anderson, B. D. O., and Moore, J. B., 1971, Linear Optimal Control, Prentice-Hall, Englewood Cliffs, NJ.
16.
Bitmead, R. R., Gevers, M., and Wertz, V., 1990, Adaptive Optimal Control: The Thinking Man’s GPC, Prentice-Hall, Englewood Cliffs, NJ.
17.
Poubelle
,
M. A.
,
Petersen
,
I. R.
,
Gevers
,
M.
, and
Bitmead
,
R. R.
,
1986
, “
A Miscellany of Results on an Equation of Count J. F. Riccati
,”
IEEE Trans. Autom. Control.
,
AC-31
, pp.
651
654
.
18.
Poubelle
,
M. A.
,
Bitmead
,
R. R.
, and
Gevers
,
M.
,
1988
, “
Fake Algebraic Riccati Techniques and Stability
,”
IEEE Trans. Autom. Control.
,
AC-33
, pp.
379
381
.
19.
Bitmead
,
R. R.
,
Gevers
,
M.
,
Petersen
,
I. R.
, and
Kaye
,
R. J.
,
1985
, “
Monotonicity and Stabilizability Properties of Solutions of the Riccati Difference Equation: Propositions, Lemmas, Theorems, Fallacious Conjectures and Counterexamples
,”
Syst. Control Lett.
,
5
, pp.
309
315
.
20.
de Souza, C. E., 1989, “Monotonicity and Stabilizability Results for the Solution of the Riccati Difference Equation,” Proc. Workshop on the Riccati Equation in Control, Systems and Signals, S. Bittanti, ed., Como, Italy, pp. 38–41.
You do not currently have access to this content.