A disturbance observer based tracking control algorithm is presented in this paper. The key idea of the proposed method is that the plant nonlinearities and parameter variations can be lumped into a disturbance term. The lumped disturbance signal is estimated based on a plant dynamic observer. A state observer then corrects the disturbance estimation in a two-step design. First, a Lyapunov-based feedback estimation law is used. The estimation is then improved by using a feedforward correction term. The control of a telescopic robot arm is used as an example system for the proposed algorithm. Simulation results comparing the proposed algorithm against a standard adaptive control scheme and a sliding mode control algorithm show that the proposed scheme achieves superior performance, especially when large external disturbances are present. [S0022-0434(00)00802-9]

1.
Craig
,
J. P.
,
Hue
,
P.
, and
Sastry
,
S.
,
1987
, “
Adaptive Control of Mechanical Manipulators
,”
Int. J. Rob. Res.
,
6
, No.
2
, pp.
16
28
.
2.
Slotine
,
J.
, and
Li
,
W.
,
1987
, “
On the Adaptive Control of Robot Manipulators
,”
Int. J. Rob. Res.
,
6
, No.
3
, pp.
49
59
.
3.
Middleton
,
R.
, and
Goodwin
,
G.
,
1988
, “
Adaptive Computed Torque Control for Rigid Link Manipulators
,”
System Control Letter
,
10
, No.
1
, pp.
9
16
.
4.
Ortega
,
R.
, and
Spong
,
M. W.
,
1989
, “
Adaptive Motion Control of Rigid Robots: A Tutorial
,”
Automatica
,
25
, pp.
877
888
.
5.
Johansson
,
R.
,
1990
, “
Adaptive Control of Robot Manipulator Motion
,”
IEEE Trans. Rob. Autom.
,
6
, No.
4
, pp.
483
490
.
6.
Colbaugh
,
R.
,
Glass
,
K.
, and
Seraji
,
H.
,
1995
, “
Performance-Based Adaptive Tracking Control of Robot Manipulators
,”
J. Robot. Syst.
,
12
, pp.
517
530
.
7.
Reed
,
J.
, and
Ioannou
,
P.
,
1989
, “
Instability Analysis and Robust Adaptive Control of Robotic Manipulator
,”
IEEE Trans. Rob. Autom.
,
5
, No.
3
, pp.
381
386
.
8.
Nicosia
,
S.
, and
Tomei
,
P.
,
1995
, “
A Tracking Controller For Flexible Joint Robots Using Only Link Position Feedback
,”
IEEE Trans. Autom. Control.
,
40
, pp.
885
890
.
9.
Fu
,
L.
,
1992
, “
Robust Adaptive Decentralized Control of Robot Manipulators
,”
IEEE Trans. Autom. Control.
,
37
, pp.
106
110
.
10.
Guldner
,
J.
, and
Utkin
,
V. I.
,
1995
, “
Sliding Mode Control for Gradient Tracking and Robot Navigation Using Artificial Potential Fields
,”
IEEE Trans. Rob. Autom.
,
11
, pp.
247
254
.
11.
Colbaugh
,
R.
,
Seraji
,
H.
, and
Glass
,
K.
,
1994
, “
A New Class of Adaptive Controllers for Robot Trajectory Tracking
,”
J. Robot. Syst.
,
11
, pp.
761
772
.
12.
Nakao, M., Ohnishi, K., and Miyachi, K., 1987, “A Robust Decentralized Joint Control Based on Interference Estimation,” Proc. IEEE Int. Conf. Robotics and Automation, 1, pp. 326–331.
13.
Dote, Y. et al., 1990, “Disturbance Observer-Based Robust and Fast Speed Controller For Induction Motors,” Proc. of 1990 IEEE Industry Applications Society Annual Meeting, pp. 653–662.
14.
Bickel, R., and Tomizuka, M., 1995, “Disturbance Observer Based, Hybrid Impedance Control,” Proceedings of the 1995 American Control Conference, pp. 729–733.
15.
Chan
,
S. P.
,
1995
, “
Disturbance Observer for Robot Manipulators with Application to Electronic Components Assembly
,”
IEEE Trans. Ind. Electron.
,
42
, No.
5
, pp.
487
493
.
16.
Choi, Y., Chung, W., and Youm, Y., 1996, “Disturbance Observer in H∞ Frameworks,” Proc. of IEEE IECON Conference, pp. 1394–1400.
17.
Narendra, K. S., and Annaswamy, A. M., 1989, Stable Adaptive Systems, Prentice-Hall, New York.
18.
Popov, V. M., 1973, Hyperstability of Control Systems, Springer-Verlag, New York.
You do not currently have access to this content.