This paper presents a design algorithm of involving robust decoupled control of uncertain multivariable feedback systems. Two-degree-of-freedom system structure is adopted to handle the quantitative robustness and decoupled performance requirements. Quantitative feedback theory is applied for loop compensator design to achieve quantitative robustness. A decoupled model matching approach is employed for prefilter design to achieve input-output decoupling performance. Thus, the design method of two-degree-of-freedom compensators is proposed to achieve decoupled system control with quantitative robust performance. Since internal stability is satisfied, this design method performs appropriately for any stable or unstable, minimum or non-minimum phase system. The AFTI/F-16 flight control system is considered as the design example to illustrate the design algorithm.

1.
Anon, 1980, “Flying Qualities of Piloted Airplanes,” MIL-SPEC, MIL-F-8785C.
2.
Chen
B. S.
, and
Wang
S. S.
,
1987
, “
Multivariable Model Matching Control: Perfect and Imperfect Cases
,”
International Journal of Control
, Vol.
46
, No.
5
, pp.
1579
1588
.
3.
Cheng
C. C.
,
Tsai
T. P.
, and
Wang
T. S.
,
1994
, “
Nearly Non-Interacting Design of Multivariable Feedback Systems
,”
Control Theory and Advanced Technology
, Vol.
10
, No.
1
, pp.
19
37
.
4.
Cheng
C. C.
,
Tsai
T. P.
, and
Wang
T. S.
,
1995
, “
A Near-Decoupling Design of Multivariable Feedback Systems with the V-Canonical Compensator
,”
International Journal of Systems Science
, Vol.
26
, No.
1
, pp.
135
146
.
5.
Doyle, J. C., Francis, B. A., and Tannenbaum, A. R., 1992, Feedback Control Theory, Macmillan Publishing Company.
6.
Horowitz
I. M.
, and
Sidi
M.
,
1972
, “
Synthesis of Feedback Systems with Large Plant Ignorance for Prescribed Time Domain Tolerance
,”
International Journal of Control
, Vol.
16
, No.
2
, pp.
287
309
.
7.
Horowitz
I. M.
,
1979
, “
Quantitative Synthesis of Uncertain Multiple Input-Output Feedback System
,”
International Journal of Control
, Vol.
30
, No.
1
, pp.
81
106
.
8.
Horowitz
I. M.
, and
Claytin
L.
,
1981
, “
Design of a 3 × 3 Multivariable Feedback System with Large Plant Uncertainty
,”
International Journal of Control
, Vol.
33
, No.
4
, pp.
677
699
.
9.
Horowitz
I. M.
,
1991
, “
Survey of Quantitative Feedback Theory (QFT)
,”
International Journal of Control
, Vol.
53
, No.
2
, pp.
255
291
.
10.
Lee
H. P.
, and
Bongiomo
J. J.
,
1993
, “
Wiener-Hopf Design of Optimal Decoupled Multivariable Feedback Control Systems
,”
IEEE Transactions on Automatic Control
, Vol.
AC-38
, No.
12
, pp.
1838
1843
.
11.
Liu, C. H., 1983, General Decoupling Theory of Multivariable Process Control Systems, Springer-Verlag, Berlin.
12.
Mayne
D. Q.
,
1979
, “
Sequential Design of Linear Multivariable Systems
,”
IEE Part D
, Vol.
126
, No.
6
, pp.
568
572
.
13.
Morse
W. D.
, and
Ossman
K. A.
,
1990
, “
Model Following Reconfigurable Flight Control System for the AFTI/F-16
,”
Journal of Guidance, Control, and Dynamics
, Vol.
13
, No.
6
, pp.
969
976
.
14.
Nordgren
R. E.
,
Nwokah
O. D. E.
, and
Franchek
M. A.
,
1994
, “
New Formulations for Quantitative Feedback Theory
,”
International Journal of Robust and Nonlinear Control
, Vol.
4
, No.
1
, pp.
47
64
.
15.
Perng
M. H.
,
1989
, “
Nearly Decoupled Multivariable Control Systems Design Part I
,”
International Journal of Control
, Vol.
50
, No.
4
, pp.
1103
1120
.
16.
Schmitendorf
W. E.
,
1987
, “
Design Methodology for Robust Stabilizing Controllers
,”
Journal of Guidance, Control, and Dynamics
, Vol.
10
, No.
3
, pp.
250
254
.
17.
Vidyasagar, M., 1985, Control System Synthesis: A Factorization Approach. The MIT Press, Cambridge, MA, London.
This content is only available via PDF.
You do not currently have access to this content.