System optimization over a parameter space produces optimal solutions which lie on the bifurcation set of the ambient space. As such, the optimality (quality) metric (as a function of the parameters) is highly sensitive to the parameters, to the point of inducing instability for differential parameter variations. Singularities in this function diffeomorphically induce corresponding degenerate singularities in the optimal closed-loop characteristic polynomials, which serves as a signature for potential catastrophic loss of quality that is most easily exhibited by the resulting dynamic instability. In this paper, we examine the loss of quality in H and related optimal systems via these diffeomorphic degenerate closed-loop poles.

1.
Andronov, A. A., and Pontryagin, L. S., 1937, System’s Grossiers, Dokl. Akad. Nauk, USSR, 14, pp. 247–251.
2.
Arnold
V. I.
,
1972
, “
Lectures on Bifurcations in Versal Families
,”
Russian Math. Surveys
, Vol.
27
, No.
5
, pp.
54
123
.
3.
Arnold, V. I., 1973, Ordinary Differential Equations, MIT Press.
4.
Arnold, V. I., 1981, Singularity Theory, Cambridge University Press.
5.
Arnold, V. I., Gusein-Zade, S. M., and Varchenko, A. N., 1985, Singularities of Differentiable Maps, Vol. 1, Birkhauser, Boston, MA.
6.
Arnold, V. I., 1986, Catastrophe Theory, Springer-Verlag, Berlin.
7.
Arnold, V. I., 1988, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, Berlin.
8.
Bauer
L.
,
Keller
H.
, and
Reiss
E.
,
1975
, “
Multiple Eigenvalues Lead to Secondary Bifurcations
,”
SIAM J. Appl. Math.
, Vol.
17
, pp.
101
123
.
9.
Brocker, T., and Lander, L., 1975, Differentiable Germs and Catastrophes, Cambridge University Press.
10.
Bryzgalova
L. N.
,
1977
, “
Singularities of the Maximum of a Parametrically Dependent Function
,”
Funct. Analy. Applic.
, Vol.
11
, pp.
59
60
.
11.
Bryzgalova
L. N.
,
1978
, “
Maximum Function of a Family of Functions Depending on Parameters
,”
Funct. Analy. Applic.
, Vol.
12
, pp.
66
67
.
12.
Gilmore, R., 1981, Catastrophe Theory for Scientists and Engineers, John Wiley, New York.
13.
Happawana
G. S.
,
Bajaj
A. K.
, and
Nwokah
O. D. I.
,
1991
, “
A Singular Perturbation Perspective on Mode Localization
,”
J. Sound and Vibration
, Vol.
147
, No.
2
, pp.
361
365
.
14.
Happawana
G. S.
,
Bajaj
A. K.
, and
Nwokah
O. D. I.
,
1993
, “
A Singular Perturbation Analysis for Eigenvalue Veering and Modal Sensibility in Perturbed Linear Periodic Systems
,”
J. Sound and Vibration
, Vol.
160
, No.
2
, pp.
225
242
.
15.
Happawana
G. S.
,
Bajaj
A. K.
,
Nwokah
O. D. I.
, and
Azene
M.
,
1998
, “
Free and Forced Response of Mistuned Linear Cyclic Systems: A Singular Perturbation Approach
,”
J. Sound and Vibration
, Vol.
211
, No.
5
, pp.
761
768
.
16.
Hirsch, M. W., and Smale, S., 1974, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, Orlando, FL.
17.
Iwasaki, T., 1997, “The Dual Iteration for Fixed Order Control,” Proceedings, American Control Conference, Albuquerque, NM, Vol. 1, pp. 62–66.
18.
Keel, L. H., and Bhattacharrya, S. P., 1997, “Robust, Fragile or Optimal?” Proceedings, American Control Conference, Albuquerque, NM, June 1997, also IEEE-TAC, pp. 1098–1105, Aug.
19.
Keener
J. P.
,
1973
, “
Perturbed Bifurcation Theory at Multiple Eigenvalues
,”
Acta. Rational Mech. Analy.
, Vol.
56
, pp.
384
391
.
20.
Kucera, V., 1974, Discrete Linear Control: The Polynomial Equation Approach, John Wiley, New York.
21.
Lu, Y. E., 1976, Singularity Theory and an Introduction to Catastrophe Theory, Springer-Verlag, Berlin.
22.
Matov
V. I.
,
1982
, “
The Topological Classification of Germs of the Maximum and Minimax Functions of a Family of Functions in General Position
,”
Russian Math. Surveys
, Vol.
4
, pp.
127
128
.
23.
Nwokah, O. D. I., Happawana, G. S., and Afolabi, D., 1997, “The Design of Quality Engineered Control Systems,” Proc. IMECE, ASME, Dallas, Nov.
24.
Owens, D. H., 1978, Feedback and Multivariable Systems, Peter Peregrinus, London.
25.
Poston, T., and Stewart, I., 1978, Catastrophe Theory and Its Applications, Pitman, London.
26.
Samanarayake
S.
,
Bajaj
A. K.
, and
Nwokah
O. D. I.
,
1995
, “
Amplitude Modulated Dynamics and Bifurcations in the Resonant Response of a Structure with Cyclic Symmetry
,”
Acta. Mechanica
, Vol.
109
, pp.
101
125
.
27.
Thom, R., 1995, Structural Stability and Morphogenesis, Benjamin-Addison Wesley, New York.
28.
Thompson
J. M. T.
,
1973
, “
Erosion of Optimum Designs by Compound Branching Phenomena
,”
J. Mech. Phys. Solids
, Vol.
24
, pp.
135
141
.
29.
Thompson
J. M. T.
, and
Hunt
G. W.
,
1974
, “
Dangers of Structural Optimization
,”
Engrg. Optimization
, Vol.
1
, pp.
99
110
.
30.
Thompson
J. M. T.
, and
Hunt
G. W.
,
1977
, “
A Bifurcation Theory for the Instabilities of Optimization and Design
,”
Synthese
, Vol.
36
, pp.
315
323
.
31.
Vidyasagar, M., 1985, Control System Synthesis: A Factorization Approach, MIT Press.
This content is only available via PDF.
You do not currently have access to this content.